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Abstract

A massively parallel coupled Eulerian-Lagrangian low Mach number reacting ow code is developed

and used to study the structure and dynamics of a forced planar buoyant jet ame in two dimensions. The

numerical construction uses a �nite di�erence scheme with adaptive mesh re�nement for solving the scalar

conservation equations, and the vortex method for the momentum equations, with the necessary coupling

terms. The numerical model construction is presented, along with computational issues regarding the parallel

implementation. An experimental acoustically forced planar jet burner apparatus is also developed and used

to study the velocity and scalar �elds in this ow, and to provide useful data for validation of the computed

jet. Burner design and laser diagnostic details are discussed, along with the measured laboratory jet ame

dynamics. The computed reacting jet ow is also presented, with focus on both large-scale outer buoyant

structures and the lifted ame stabilization dynamics. A triple ame structure is observed at the ame base

in the computed ow, as is theoretically expected, but was not observable with present diagnostic techniques

in the laboratory ame. Computed and experimental results are compared, along with implications for model

improvements.
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1. Introduction

Turbulent reacting ow is a key element of many practical engineering systems where ow instabilities leading

to unsteady large-scale ow structures, and breakdown into three-dimensional (3D) turbulence, are utilized

to enhance fuel-oxidizer mixing and to stabilize ames. Turbulence is also central to the dynamics of large

�res including, in particular, pool �res.

The understanding and validated prediction of pool �re dynamics is of signi�cant importance in the

process of risk assessment in accidental fuel spill �re scenarios. Typical pool �re environments involve fuel

pool diameters and overall reacting plume height in the tens of meters, leading to highly turbulent motion

in a substantial region of the ow. Moreover, they typically involve complex fuels, high levels of soot and

signi�cant radiative heat transfer both to the evaporating fuel pool and adjacent structures.

The detailed 3D modeling of these ows is well beyond present computational capabilities. The large

range of spatial scales, from the pool dimensions to the kolmogorov scale, present formidable modeling

di�culties. Similarly, the large range of temporal scales, from large scale buoyant plume dynamics to

chemical reaction times, lead to severe sti�ness and associated di�culties in the modeling of unsteady

system evolution. This is in addition to the fact that much of the physical understanding of the chemistry of

complex fuels and the ensuing processes of soot generation, transport, and oxidation is lacking. Moreover,

detailed experimental measurements of pool �re dynamics are very di�cult, given the sheer scale of these

ows and the considerable hazards and costs involved in their observation.

On the other hand, many of the large-scale features of pool �res may be studied using simpler two-

dimensional (2D) ows that are amenable both to numerical modeling and detailed experimental measure-

ments. These studies are useful both to advance the understanding of unsteady ow-ame interaction and

provide a platform where concurrent numerical models and experimental results are available for improving

con�dence in overall model validity. One particularly useful and well-studied class of ows is buoyant jet

di�usion ames. Jet ames involve both internal shear-driven ow structures and outer buoyant structures.

On the other hand, global dynamics of low speed buoyant jets resemble those of pool �res and plumes, since

the internal structures are largely dominated by outer eddies driven by baroclinic generation of vorticity due

to gravity.

We note however that the detailed prediction of buoyant reacting jets, even at laboratory size ranges and

using simple fuels, still presents signi�cant modeling challenges. Again, the details of rich-ame chemistry

and soot formation, even with the simplest fuels, are matters of research, and the small spatial and temporal

scales associated with detailed chemical descriptions of ames present signi�cant sti�ness and associated

numerical di�culties. Nonetheless, with appropriate sets of assumptions and model simpli�cations, the

modeling of these laboratory-scale ows is feasible.

In this work, both numerical modeling studies and experimental measurements are utilized to study a

low speed buoyant jet di�usion ame. In the following, we proceed by reviewing background material on
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buoyant reacting jet ows, followed by a detailed description of the present experimental methodology and

results for a given laboratory scale buoyant jet ame. This is followed by the presentation of the model

formulation and numerical scheme as well as the computational implementation. Numerical results are then

presented and compared to the experimental data. Both sets of data are utilized to study buoyant jet ame

dynamics and stabilization. Comparisons between the measured and computed ows are used for model

validation and for indicating necessary areas of model improvement. Finally, conclusions of this study are

presented with recommendations for future work.
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2. Background - Jet Di�usion Flames

Jet di�usion ames, involving a jet fuel stream surrounded with coow air, have been studied both experi-

mentally and numerically. From the early work of Vanquickenborne and van Tiggelen [1], interest has been

focused on the mechanism of lifted jet ame stabilization. The ame lifto� mechanism is of particular signif-

icance in turbulent jet ames because of its relevance to combustion stability. Lifto� theories abound in the

literature [1,2,3,4,5,6], and are discussed in recent studies [7,8,9]. Experimental studies in lifted jet ames

have provided mean and instantaneous measurements of velocity and scalar �elds, and ame lifto� heights

[8,9,10,11,12,13,14,15,16,17]. Recent data [9,18] indicates that ow velocities into the ame at the stabiliza-

tion point are in the range of [0; 3SL], where SL is the ame laminar burning speed for the stoichiometric

mixture at the stabilization point.

The observed ow and scalar �eld structure in the vicinity of the stabilization point has suggested

the existence of a triple ame at that location [6,19,20]. A triple ame is a particular ame structure

observed under partially premixed ow conditions with gradients of mixture fraction [21,22,23]. The structure

of a triple ame involves three ame branches meeting at a point: a di�usion ame branch along the

stoichiometric mixture fraction contour, a rich premixed ame extending into the rich region, and a lean

premixed ame extending into the lean region. Triple ames have not been observed experimentally in

lifted jet ows. Circumstantial evidence for their existence at the lifted ame base consists primarily of the

expected premixing of fuel and coow air in going from the jet exit to the ame base, and the resulting

mixture conditions at the base involving a gradient in mixture fraction. The structure of a hypothetical

triple ame at the base of the lifted ame would involve a di�usion ame which extends downstream from

the stabilization point, and rich and lean premixed ame branches extending into the fuel and coow streams

respectively. Triple ames have been observed in numerical simulations of di�usion ames in simple ows

with mixture fraction gradients, but not in lifted unsteady jet ames (perhaps because of poor spatial

resolution). On the other hand, locally re�ned mesh computations of steady state bunsen ames have shown

some evidence of a triple ame at the ame base [24].

Besides ame lifto� and stabilization, studies of low-speed jet ames have demonstrated the growth of

outer vortex structures that are typical of buoyant plumes [25,26,27,28,29,30]. The mechanism of formation

of these structures is not fully understood [31,32,33], although it clearly does involve baroclinic vorticity

generation due to the misalignment of gravity and density gradients. The shedding frequency of buoyant

structures in both reacting and non-reacting jets and plumes has been studied extensively [31,32,33,34,35].

Based on a compilation of a large number of jet ame experimental measurements with a variety of fuels,

Hamins et al. [31] �nd a Strouhal number (St = fD=V ) scaling given by: St / Fr�m to be adequate over a

large range of Froude number (Fr = V 2=gD) withm = 0:57 (where f is frequency, D is jet width or diameter,

V is jet velocity, and g is gravitational acceleration). While a critical jet momentum is necessary for the onset

of oscillation, the oscillation frequency is found to have minor dependence on velocity, such that f / gD�0:49
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is found to be also an equally good scaling for existing jet ame data over a wide range of parameters [31].

Interestingly, Nitrogen dilution of the fuel stream, resulting in a change in adiabatic ame temperature and

a factor of 2 change in total heat release rate, has no e�ect on the jet pulsation frequency [31]. It is clear

however that, for a jet ame, the di�erence in density between the burnt uid and coow air is crucial for the

necessary baroclinic torques leading to the buoyant structures. In fact, jet ame pulsations have also been

correlated with variations in the Richardson number (Ri = (�1� �b)gD=(�1(V �V1)2), where � is density

and subscripts b and 1 refer to burnt gas and freestream coow/ambient air conditions respectively) [32],

such that Ri (or V ) provides a second-order variation on top of the dominant D e�ect indicated above. On

the other hand, it is found that dilution of the fuel stream does a�ect the amplitude of ow oscillations

despite its reported minor e�ect on frequency [32].
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3. Experimental Methodology

A laminar methane-air di�usion ame is studied. The nitrogen-diluted fuel stream of a Wolfhard-Parker slot

burner [36] is acoustically forced, producing repeatable, two-dimensional vortices that strain and curve the

ame. At forcing amplitudes su�cient to cause signi�cant ame wrinkling, ame response can be described

by a low-frequency behavior characterized by intermittent ame attachment (below about 40 Hz) and a

high-frequency behavior characterized by a constant lifto� height and no reattachment (above about 60 Hz).

Forcing frequencies of 7.5 and 90 Hz were selected for detailed study using Particle Imaging Velocimetry

(PIV), and Planar Laser-Induced Fluorescence (PLIF) from OH and acetone.

3.1 Burner Description and Flow Conditions

The laminar ame was stabilized on a Wolfhard-Parker slot burner shown schematically in Fig. 1. The

burner consists of a rectangular slot 11-mm wide by 80-mm long for the fuel ow, surrounded on all sides

by a lower velocity coowing air stream. The test section is a 150-mm square chamber that was necessary

to eliminate room disturbances. Large-scale turbulence structures in the coow air upstream of the burner

exit are eliminated by a 25-mm thick honeycomb section and a �ne-wire screen to provide a uniform laminar

inlet ow. In addition to the enclosure, a wire mesh forming a two dimensional contraction located above

the ame near the top of the burner was used to suppress ame icker. The resulting burner con�guration

provides a highly reproducible, two-dimensional ame with two identical ame sheets located in the laminar

mixing layers adjacent to the fuel jet. Optical access is provided by two narrow slots located on opposite

sides of the chamber that allow a laser sheet to pass through the burner at a right angle to the ame sheets.

Fused-silica windows mounted in the front and back walls of the enclosure provide access for the uorescence

detection optics.

A schematic of the experiment synchronization electronics is presented in Fig. 2. The fuel jet was

acoustically forced by two 100-mm diameter loudspeakers attached to the side walls of the upstream fuel-

jet duct. The speaker was driven by a 30 MHz synthesized function generator that produced a periodic

sawtooth or square wave driving function with adjustable frequency and amplitude. The driving function is

DC ampli�ed to drive the speakers. The laser is run continuously at 7.5 Hz by a pulse generator while the

speaker driver is continuous at the selected driving frequency. A variable-delay pulse generator controls the

phase of the speaker voltage relative to the laser pulse. This system allows the ame dynamics to be studied

as a function of forcing frequency, forcing amplitude, and time. Uncertainties in interaction time are 250 �s,

as determined from variations in ame geometry within images taken at a �xed interaction time.

A mixture of methane diluted with nitrogen was used as the fuel mixture. The addition of nitrogen to

the fuel was used to reduce the amount of soot formed in the ame. Methane and nitrogen for the fuel jet,

and the outer air ow to the burner, were metered with pressure-regulated, critical ow ori�ces. For the

work presented here, the methane stream was diluted with 66 percent N2 by volume. With this dilution, a
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velocity of 0.66 m/s for the fuel jet and a coowing air velocity of 0.19 m/s provided a stable ame over a

suitable range of forcing frequencies and amplitudes.

Burner test conditions for more detailed study were selected by scanning forcing frequencies from 1

to 200 Hz at an amplitude su�cient to cause noticeable ame wrinkling. From the results of these tests

it was found that there are essentially just two modes of ame behavior. These are 1) a low frequency

mode characterized by intermittent lifting and reattachment of the ame, and 2) a high frequency mode

characterized by an always-lifted ame base and local ame extinction. Interactions at 7.5 and 90 Hz were

found to be highly repeatable and to provide a good representation of low frequency and high frequency

behavior, respectively. The N2 dilution level was then adjusted to give the most repeatable vortex/ame

interaction with the least amount of soot for both 7.5 and 90 Hz forcing frequencies. The selection of N2

dilution level is a trade-o� because higher N2 dilution gives lower soot, but also lower repeatability (even the

unperturbed ame begins to lift with su�ciently high dilution), while lower N2 dilution gives higher soot,

but better repeatability.

3.2 OH Fluorescence Imaging

A schematic of the experimental setup for OH uorescence imaging is shown in Fig. 3a. The ultraviolet

laser radiation for excitation of the OH molecule was provided by a frequency-doubled, Nd:YAG-pumped

dye laser. The beam (8-ns pulse duration, 0.3 cm�1 line width) was used to pump the Q1(6) line of the (1,0)

band of the OH A2{X2� electronic transition at 282.93 nm. Excitation from the N00=6 level was selected to

minimize temperature sensitivity of the fractional population within the absorbing level. The laser-pumped

Q1(6) line has a population fraction that varies by only 10 percent over the temperature range 1000 K to

2300 K. The OH uorescence signal was collected using a 105-mm focal length, f/4.5 UV Nikkor lens, passed

through a Schott WG305 colored glass �lter, and focused onto an intensi�ed CCD camera. The intensi�er

was gated for 2 ms, encompassing the 8-ns laser pulse while minimizing the e�ects of ame luminescence and

background light. The camera was operated in a 576�384 pixel format. With a magni�cation of 0.25, each

image provides a �eld-of-view of 52.8�35.2 mm, providing a spatial resolution of 92 �m. This resolution is

su�cient to characterize the OH ame pro�les. For example, since the measured ame thickness varies from

0.6 mm to 5 mm (based on the Full Width at Half Maximum (FWHM) of the OH pro�le), this resolution

provides between 7 and 55 points across the ame.

The collimated laser sheet for the OH uorescence was formed by a cylindrical/spherical lens combi-

nation. The spherical lens both collimated the expanding laser sheet and reduced the sheet thickness to

approximately 200 �m in the imaged area. An aperture located between the spherical lens and the entrance

slot to the burner was used to pass only the middle 33% of the sheet into the burner, thus minimizing

variations in laser power across the sheet. The resulting laser power variation was less than 20 percent,

which minimizes the corrections for laser sheet nonuniformities described below. For this laser sheet con-

�guration, a laser power below 7 mJ/pulse was used. This power level provides an average spectral power
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density within the linear uorescence regime where the uorescence signal is a linear function of laser power

and depends on the collisional quenching rate. The linearity of the uorescence signal with laser power was

veri�ed experimentally.

The collisional quenching rate term is a function of temperature, pressure, and gas composition, which

are typically not known. Barlow and Collignon [37] used strained laminar ame calculations to quantify

corrections for quenching and ground state population fraction in methane di�usion ames. Corrections

were calculated for undiluted methane, air-diluted methane, and nitrogen-diluted methane mixtures over

a range of strain rates for rotational levels of N00=6 and N00=8. It was concluded that linear LIF can be

used to measure OH concentration in these ames to good accuracy without corrections for quenching and

population fraction. At low values of strain, the combined corrections due to quenching and population

fraction variations across the ame were less than 5 percent of the maximum OH concentration. At higher

strain rates approaching extinction, the combined corrections were less than 20 percent. These error estimates

are expected to be indicative of the errors in the present measurements. Given the modest errors in the

relative OH concentration levels, the visualizations are expected to be fully representative of the actual ame

structure.

Each OH image was normalized by the measured laser sheet intensity distribution and corrected for

variations in pulse energy on a shot-by-shot basis. A laser sheet pro�ler was developed to measure the laser

sheet intensity distribution. The sheet intensity distribution was obtained by using a thin quartz beam

splitter to reect a small percentage (�4%) of the incident laser sheet onto a WG305 Schott glass �lter. The

uorescence from the �lter glass was imaged onto one edge of the CCD camera array that recorded the OH

image. Thus the laser sheet intensity distribution was recorded on the same image as the OH uorescence

signal. The correspondence between the sheet pro�ler and the actual laser sheet intensity distribution was

veri�ed by simultaneously recording the sheet distribution using the pro�ler and the LIF signal from a

uniform mixture of 5 percent acetone in air. The acetone LIF pro�le and the recorded sheet pro�le were

then integrated over several columns of pixels to smooth variations due to camera shot noise. Figure 3b shows

good agreement between pro�les obtained using the two techniques. It was further found that the spatially-

integrated laser sheet pro�les recorded on the image provided a good measure of the total laser energy for

each shot. Thus each image could be corrected for laser sheet intensity distribution and laser energy, on a

shot-by-shot basis. Corrections were made to the images for variations in camera pixel sensitivity (at�eld)

and background scattered light. When the laser was tuned o� the OH line, no broadband uorescence from

other species or scattering from soot precursors was observed. Under the current ame conditions, with the

pumping and detection scheme used, the OH uorescence signal can be interpreted as the OH mole fraction

to within 20 percent.

3.3 Acetone Fluorescence Imaging

Laser-induced uorescence of acetone was used as a tracer for the fuel. Acetone was seeded directly into
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the fuel ow using an aerosol generator. The acetone seed level was maintained su�ciently low so as not to

a�ect the general ame goemetry during the interactions, but it did cause the ame to lift less and have a

greater propensity to soot. Since the acetone absorption spectrum is continuous over the wavelength range

of 240 to 320 nm, the same laser excitation wavelength of 282.93 nm was used to excite uorescence from

the acetone. This wavelength is to the long side of the peak excitation wavelength at 275 nm, but with

7 mJ of laser power, the uorescence signal was su�cient to provide a signal-to-noise ratio of about 10.

The detection system for the acetone uorescence was identical to that used for the OH uorescence. As

discussed by Clemens and Paul [14], since the uorescence signal from acetone is largely independent of its

collisional environment, the uorescence signal is proportional to the acetone number density. One problem

with the use of acetone is that, since it rapidly pyrolizes at temperatures above 1200K, acetone will not

survive in the high temperature ame zone, and will also likely disappear when mixed with hot combustion

products. Thus the acetone images are useful to identify the vortical ow structure, but do not provide a

quantitative representation of fuel concentration.

3.4 Particle Imaging Velocimetry

The Particle Image Velocimetry (PIV) system uses the 532-nm output of a double-pulsed Nd:YAG laser to

illuminate Al2O3 seed particles (nominal 0.3 mm diameter) added to the ow. With this double-pulse option

the time delay between pulses could be varied from 15 to 200 �s. Typically, a laser power of 65 mJ/pulse

was found su�cient for the measurements. The laser beam is formed into a sheet approximately 250-�m

thick using cylindrical optics and subsequently passed through the test section. Mie-scattered light from

the seed particles is detected using a CCD video camera with a 1000�1000 pixel array (TSI Model 630045

Cross-correlation Camera). Particle images corresponding to the two laser pulses are recorded on sequential

video frames using a frame straddle technique. Using this technique, the time delay between images can be

made as short as 15 �s by recording the �rst image near the end of the �rst video frame and the second image

near the start of the next frame. Average particle displacement is calculated from the images using a cross

correlation analysis and the velocity is then determined from this displacement and the known time between

laser pulses. In all data reduction calculations, 32 pixels per interrogation spot were used, with the spot size

variable depending on the size of the imaged �eld-of-view. For full-�eld images (50�50 mm �eld-of-view),

this gave an interrogation volume of 1.6�1.6�0.25 mm. For the 20�20 mm �eld-of-view used to determine

the velocities in the region of the ame stabilization point, the interrogation volume was 0.65�0.65�0.25mm.
Seed particles in both the fuel jet and coowing air were supplied by a uidized bed seeder. The

seed particles were nominal 0.5 �m diameter alumina particles. A cyclone separator located after the seeder

e�ectively removed particle agglomerates and provided a more uniform size distribution. Calculations showed

that this size was su�ciently small for the particles to accurately follow the gas ow over the range of ow

conditions studied.

The delay time between particle images was found to be an important parameter due to the large range
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of velocities in each image. For example, over the range of experimental conditions selected for detailed

measurements, the velocities typically ranged from about 0.1 m/s in the coowing air stream near the

burner inlet to nearly 3 m/s in the central fuel jet under forcing conditions. For a given spatial resolution

(i.e. interrogation spot size), particle travel between images must be limited to a distance on the order of

the resolution. On the other hand, particle travel distance must be su�cient for accurate determination

of the change in particle position between images. Generally, to study the overall ow dynamics, the

minimum pulse delay was determined by the higher velocity central jet. Typically in these cases, 150 �s

was the minimum time between pulses. When improved accuracy was required in lower velocity regions (for

example, upstream of the ame base and in the coowing air where the velocities are signi�cantly lower), the

size of the imaged region was reduced to limit the velocity range and the pulse separation time was increased

to obtain additional data sets.

The long-term repeatability of the measurements was established by repeating the measurements after

the initial data set was obtained. The estimated uncertainties in the velocity were determined from calibration

measurements in a laminar air ow of known velocity exiting through a 50-mm diameter nozzle. From these

measurements, the experimental uncertainty in velocity was estimated over a range of velocities consistent

with those measured in the forced planar jet experiments to be better than 1 percent.

14



Laser Sheet

Honeycomb

Coflow 
Inlet 

Fuel Inlets 

Coflow 
Inlets 

Fuel Jet

Screens

Speaker

Figure 1. Schematic of forced planar jet experimental apparatus.
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4. Experimental Results

Experimental results are presented using both Planar Laser Induced Fluorecence (PLIF) imaging for scalar

quantities, and Particle Imaging Velocimetry (PIV) for the velocity �eld. Results were acquired for both 7.5

and 90 Hz forcing of the jet stream.

4.1 Planar Laser Induced OH and Acetone Fluorescence Measurements

OH images were acquired at 3.7-ms time increments throughout the interaction for the 7.5 Hz forcing

frequency. Six representative images showing the time development of the interaction are presented in

Fig. 4. The sequence starts at the upper left corner of the �gure and proceeds from left to right, with delay

times indicated in the images. Note that the original images have been cropped for presentation purposes

so that each image covers a �eld-of-view 26.8 mm in the horizontal direction by 34.4 mm in the vertical.

Also, only the right side of the ame is shown. The images clearly show the thinning and thickening of the

OH layer as the vortex moves through the �eld of view. The image for time t=0 corresponds to an unforced

ame prior to the inuence of the vortex. As expected, the ame is nearly straight in the vertical direction

and located along the interface separating the fuel and outer coow air. The ame thickness, based on the

FWHM of the OH pro�le varies between 1 and 1.6 mm; these widths agree well with OH layer thicknesses

predicted by one-dimensional (1D) ame calculations using detailed chemical kinetics at low strain rates.

Earlier calculations of vortex-ame interactions [38,39,40] have shown that positive tangential strain

rates (tangential to the ame) exist in the region around the outer, downstream edge of the vortex and

negative tangential strain rates exist in the highly-curved region at the upstream edge of the vortex where

the ame appears folded. This observation is also evident in the present numerical results when the ame

is entrained by the vortex, as is shown later. In general, and based on this expected tangential strain-rate

distribution around the vortex, the present images show that positive strain rates result in thinning of the

OH layer while negative strain rates cause signi�cant thickening of the OH layer. In regions of negative

strain, the thickness of the OH layer increases with time, reaching a maximum value of nearly 4 mm in

the last image at time t=66.7 ms. It is likely that the thickness continues to increase during subsequent

times as the vortex moves farther downstream. In the positively-strained region along the outer vortex

edge, the OH layer thickness is nearly constant at 0.75 mm (+/-10%) over the sequence of images shown.

While the present modeling results, using a single step global chemical mechanism, do not include OH, we

do observe thickening of the ame temperature pro�le in the entrained curved ame region upstream of the

vortex where negative tangential strain-rates are evident, as well as thinning in regions with large positive

tangential strain-rate, in agreement with the above observations.

The degree of observed ame wrinkling reaches a maximum value at time t=33.3 ms as the ame

becomes more wrapped around the vortical structure (Fig. 4). This wrinkling results in a signi�cant increase

in ame surface area, which is expected to enhance the volume-averaged burning rate.
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It is also observed that the ame base is periodically lifted from the burner lip as the vortex passes

along the ame. The lifto� height increases to a maximum of about 5 mm from the burner lip before moving

back upstream to reattach as the vortex continues downstream. Interestingly, the ame does not lift until

the vortex has moved downstream of the stabilization point. These observations are also evident in the

numerical results discussed later below.

Images at the 90 Hz forcing frequency were acquired at 310-�s increments. Six representative images

are presented in Fig. 5. In this case, the ame remains lifted at a constant height of about 5 mm downstream

of the burner lip. This observation is in contrast to the 7.5 Hz case where the ame periodically lifts from

the burner lip and subsequently reattaches. The constant lifto� height is due to the high 90 Hz forcing

frequency, which results in a close vortex spacing such that the ame can never reattach. Most notable in

Fig. 5 is the strain-induced extinction of the OH layer along the upstream edge of the vortex. In the �rst

image, at time t=0, the OH layer thickness remains nearly constant along the upstream trailing edge of the

vortex. During the next two images in the sequence, the OH layer is stretched and thinned until at t=2.8 ms

a break occurs where the OH layer is thinnest. This event results in the formation of a separated island of

OH which eventually burns out during the next 6 ms. Acetone images described below indicate that the

mixture surrounding the OH island is complicated and most likely consists of a mixture of fuel, entrained

air, and combustion products. Note that no regions exist where the OH layer thickness approaches that

observed in the negative strain regions seen in the 7.5 Hz images. It is speculated that this is due to the

generally smaller vortices and shorter residence times in the 90 Hz case.

Further details of the OH island formation are presented in Fig. 6. The fuel stream has been doped

with acetone for this series of PLIF images, which correspond exactly to the interaction times shown in Fig.

5. These images help to illustrate the mechanism that leads to island formation. As described previously,

acetone can be used as a tracer for the fuel at temperatures below about 1200 K, which is the temperature

at which the acetone pyrolizes. The acetone reveals the presence of two fuel-side vortices that cause local

extinction of the OH layer. One vortex, located above the rolled-up portion the ame, is larger, appears less

concentrated, and accounts for the large curvature produced as the OH layer wraps around it. Its rotational

direction is clockwise. A second vortex, located upstream of the ame, is smaller and more concentrated,

and again has a clockwise rotation. It also has a higher speed, based on the relative motion of the vortices in

the images, and thus moves closer to the downstream vortex during the image sequence shown. As a result,

the upstream tail of the ame undergoes signi�cant positive tangential strain-rate due to the rotational

motion induced by the vortices. The OH layer becomes signi�cantly thinner in the region where the distance

between vortices is minimum. Eventually, a break is observed in this layer, evidently due to high tangential

strain-rate. This may signify ame extinction at this location, at least the extinction of OH-related reactions.

The OH island is formed as a result of this process. The upstream vortex now replaces the previous vortex

as the vortex around which the ame is stabilized and the interaction repeats. The acetone signal further

shows that the OH island, even though it is located on the fuel-rich side of the ame, is not surrounded by
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cold fuel since there is little or no acetone signal from the gas surrounding the island. Thus the surrounding

uid likely consists of a mixture of high temperature products, entrained air, and heated fuel.

Figure 7 shows the e�ect of forcing amplitude on the ame for 7.5 Hz (top row) and 90 Hz (bottom

row) forcing frequency. The forcing amplitude, as measured by the voltage of the speaker driving signal,

increases from left to right in the images and is indicated at the bottom of the images. In both cases,

signi�cant thickening of the OH layer is seen as the forcing amplitude is increased. At the 7.5 Hz forcing

frequency, signi�cant thickening occurs at the upstream edge of the vortex where the OH layer curvature is

concave toward the air side, even at low forcing amplitude. This thickness increases by about 50 percent,

from 3.6 mm at the lowest amplitude to 5 mm at the highest amplitude. At the lowest forcing amplitude,

the ame remains attached to the burner lip. An increase in the amplitude results in the ame lifting o� and

stabilizing about 5 mm downstream. Once lifto� occurs the lifto� height is insensitive to forcing amplitude.

At 90 Hz the thickness of the relatively straight, vertical OH layer in the upper half of the images increases

even more dramatically, from about 2 mm at the lower forcing amplitude to almost 6 mm at the higher

amplitude. A greater forcing amplitude also is seen to increase the size of the OH island formed in the 90 Hz

case. This is likely a result of the higher rotational velocities found in the stronger vortices generated by

greater forcing. These stronger vortices are capable of rolling a larger segment of the ame toward the jet

centerline. At all forcing amplitudes, the 90 Hz ame is lifted to about 5 mm from the burner lip and the

lifto� height is independent of forcing amplitude.

We note that, provided the strain or, equivalently, scalar dissipation rates are nearly constant, the LFM

assumptions require that the ame structure is �xed and the peak value of OH is also constant. However, an

examination of the image corresponding to the unperturbed ame at time t=0 in Fig. 4 shows that the OH

mole fraction is a maximum upstream nearest the burner lip and decreases with downstream distance. The

variation of the peak OH with downstream distance in the unperturbed ame is shown in Fig. 8. It can be

seen that the OH decreases by nearly a factor of two over the 25 mm distance shown. The measured decrease

cannot be attributed to laser sheet intensity variations since the images have been corrected for variations

in sheet intensity. Further, since the maximum corrections to the OH uorescence signal for quenching

variations and temperature dependence are estimated at less than 20 percent, the measured decrease in the

OH uorescence signal should be an accurate representation of the actual variation in OH mole fraction.

PLIF measurements of the OH mole fraction obtained by other researchers in laminar di�usion ames

also show a decrease in OH with distance above the fuel-jet exit. For example, Garo et al. [41] measured the

OH mole fraction in a laminar, methane-air di�usion ame stabilized on a round, 12.7-mm jet burner. The

OH measurements were made in conjunction with soot volume fraction and number density measurements

to study soot oxidation mechanisms. A factor of three decrease in the maximum OH concentration was

measured between one and three jet diameters downstream of the jet exit, which is comparable to the

present measurements.

Three mechanisms were considered that might account for the observed decrease in peak OH: 1) removal
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of OH through reactions with soot and hydrocarbon soot precursors, 2) variations in strain or scalar dissipa-

tion with downstream distance and 3) changes in reactant composition and/or temperature with downstream

distance.

Comparable decreases in peak OH with downstream distance were also measured by Puri et al. [42] in

laminar methane-air and ethene-air di�usion ames in a round jet. The observed OH decrease was attributed

to reactions between OH and soot, which has been proposed as an important soot oxidation pathway. In

both this study and that by Garo et al. [41] the fuel was pure methane and the sooting tendency was

considerably higher than in the present ame, where N2 dilution was added to inhibit soot formation. It

was also observed in the present ame that, while N2 dilution was e�ective at eliminating soot emissions

in the upstream region where the OH images were obtained, a noticeable amount of yellow soot emission

was seen farther downstream even with the N2 dilution. Thus it is believed that soot precursors (Poly

Aromatic Hydrocarbons-PAH's and higher hydrocarbon radicals) might exist in the imaged �eld upstream

of the visible soot emissions. Based on the analogous results obtained by Garo et al. and Puri et al., it

was believed that the OH decrease could be attributed to the presence of soot precursors, which e�ectively

remove OH. The expected increase in soot precursors with downstream distance could thus account for the

observed decrease in OH.

To test this possibility, the decrease in peak OH with downstream distance was measured with additional

dilution of 50 and 76 percent (by volume) N2 dilution in methane. These results are shown for comparison

with the 66 percent N2 dilution results in Fig. 8. Although the added N2 dilution resulted in a noticeable

reduction in the amount of visible soot formed farther downstream, it was found that, over the range of

dilution studied, there is at most a 10% reduction in peak (absolute) OH mole fraction. This reduction

compares with a predicted reduction using 1D detailed ame calculations (see below) of about 20% when the

N2 dilution is increased by the same amount. More importantly, the rates of decrease measured are nearly

identical for the two dilution levels, even though the rate of visible soot formation is delayed with added

dilution. Thus, reactions with soot do not appear to account for the observed disappearance of OH.

The e�ect of variable strain/scalar dissipation was considered next. The unperturbed OH image (t=0)

at 7.5 Hz in Fig. 4 shows an increase in the OH layer thickness with downstream distance. This is likely

accompanied by an increase in the width of the mixed interface between the fuel and air streams due to

interdi�usion of fuel, oxidizer and products. With this increased layer thickness, a decrease in mixture

fraction gradient and scalar dissipation would also be expected. Similarly, the shear layer located between

the high velocity fuel jet and the low velocity air stream contains a velocity gradient that is expected to

decrease as the shear layer width increases with downstream distance. Thus strain rates at the ame surface

should also decrease with downstream distance. To further explore this possibility, counterow di�usion ame

calculations were carried out over a range of strain rates, and thus scalar dissipation rates, to determine the

dependenc of the maximum OH level on these parameters. Details of the model and computational approach

can be found elsewhere [43,44,45]. The calculations considered a fuel stream consisting of methane diluted
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with 66 percent N2 and an opposing air stream to match the current test conditions. A detailed kinetic

mechanism including C2 hydrocarbons was used in the calculations. It was found that changes in strain and

scalar dissipation over the range of strain rates up to extinction cannot account for more than a 10 percent

change in maximum OH, well below the observed 50 percent decrease. Thus, variations in strain also cannot

account for the observed OH decrease.

The third possible cause for the OH decrease is dilution of the fuel and air by combustion products

generated at the ame. This is essentially a history e�ect in which OH production and removal kinetics

are a�ected by events that occur elsewhere in the ow. For example, in the present con�guration, the ow

direction of both fuel and oxidizer streams is nearly parallel to the unperturbed OH layer de�ning the ame

surface. This is in contrast to a counterow di�usion ame where combustion product species formed in the

reaction zone are carried away from the ame zone, normal to the incoming reactant streams. Thus, in the

latter case, mixing between the product gases and the reactant streams is minimized and limited only to

product species that di�use upstream. In the coowing reactant stream con�guration, products formed in

the reaction zone at upstream locations are convected downstream, parallel to the OH layer/ame surface.

This promotes dilution of the reactant streams by product species, which could signi�cantly alter the OH

chemistry.

The e�ect of dilution by product species was investigated by adding varying amounts of product dilu-

tion to the reactants and repeating the counterow di�usion ame calculations to determine the e�ect on

maximum predicted OH. The product mixture was assumed to consist of major species (H2O, CO, CO2 and

O2) with a composition and temperature corresponding to stoichiometric conditions in a low strain ame.

The addition of product mixture to both the fuel and air streams in increments up to 60% by volume was

considered. There was minimal change in the predicted OH levels with dilution. It should be noted that

when dilution was added and the reactants were maintained at ambient temperature (i.e. preheating of

the reactants due to mixing with high temperature products was neglected) nearly a 60% reduction in OH

was found. However, it is unlikely that su�cient cooling of the products could occur prior to mixing with

incoming reactants for the latter conditons to be valid.

Since the above calculations are 1D and consider only major product species dilution of the reactants,

these results clearly do not rule out the importance of multidimensional e�ects to account for the observed

decrease in OH. In the present geometry, convective ow parallel to the ame is signi�cant and could cause

signi�cant departures from counterow di�usion ame structure. For example, Smooke et al. [46] found

signi�cant di�erences between 1D ame predictions and measured temperature pro�les in laminar di�usion

ames with coowing air, which were attributed to multidimensional e�ects. Ashurst and Williams [39] also

noted the importance of transverse convection on ame properties during ame/vortex interactions where

signi�cant gradients are established parallel to the ame surface.

The OH images in Figs. 4 and 5 showed considerable variation in peak OH levels and OH layer thickness

due to ame interactions with the vortex. These e�ects are shown in greater detail in Fig. 9 where the OH
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layer thickness and the peak OH values along the distance tangential to the ame are plotted. Here the

coordinate origin is located at the ame base. The peak OH mole fraction is normalized by the peak OH

value near the base of the unperturbed ame (this reference value corresponds to the maximum OH seen

in the pro�le in Fig. 8 for the unperturbed ame at 66 percent N2 dilution). These pro�les correspond to

the OH image in Fig. 4 for a time t=18.5 ms at a forcing frequency of 7.5 Hz. The OH layer thickness

undergoes a rapid initial rise over the �rst 4 mm of the ame length. The peak value of 2.5 mm occurs

in the negative strain region at the upstream edge of the vortex. The OH layer thickness decreases in the

region of positive stretch along the outer edge of the vortex to a minimum value of about 0.75 mm, before

increasing again to about 2 mm in the unperturbed ame downstream of the vortex. These large variations

in OH thickness can be contrasted with a relatively gradual and linear decrease in the peak OH mole fraction

over the same coordinate range. A comparison with the OH variation along the unperturbed ame shown in

Fig. 8 indicates nearly identical slopes for the decrease in OH. This comparison indicates that the varying

strain and curvature along the vortex, while signi�cantly a�ecting the OH layer thickness, has a minimal

e�ect on peak OH mole fractions.

Plotted in Fig. 10 is the peak OH mole fraction as a function of the OH layer thickness for the 7.5 Hz

forcing frequency. Data points are included for all six times seen in the images of Fig. 4. The color of the

symbols indicates their relative distance downstream (blue symbols represent data from upstream locations

whereas red symbols represent data from downstream locations). The results show that, at all times, the OH

concentration is primarily determined by downstream distance, is largely uncorrelated with ame thickness

and, hence, is relatively una�ected by strain rate. The solid line indicates predicted results from the steady-

state 1D counterow di�usion ame calculations over a range of strain rates from near extinction to the lowest

strain rate for which a solution was obtained. The experimental results show signi�cant departures from the

1D ame predictions. Negative strain-rate leads to large increases in ame thickness, well beyond the 1D

ame predictions. Since negative strain rates are not considered in the 1D counterow runs, these results

point to an important limitation in the use of 1D ame results as LFM data in vortex/ame interactions.

The observed peak OH mole fractions also vary considerably more than the 1D ame would predict. Over

the range of calculated OH layer thicknesses the predicted OH levels coincide with the upper limit in the

measured OH mole fractions. For a given OH thickness, the experimental values are up to 50 percent lower.

These lower values are the result of the decrease in peak OH with downstream distance.

4.2 Particle Imaging Velocimetry Measurements

The PIV measurements provide information on the instantaneous velocity �eld. In addition to both com-

ponents of velocity, terms such as vorticity and dilatation can be derived. Typical velocity �eld data are

presented in Fig. 11. The results are shown for a nonreacting ow at a time 33.3 ms after the initiation of

the forcing pulse. The forcing frequency is 7.5 Hz and the �eld of view in the images is 18�18 mm. The

velocity vector �eld (upper left) clearly shows the presence of a clockwise rotating vortex centered in the jet
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shear layer at a transverse distance, x, of about 8 mm from the jet centerline and a streamwise distance, y,

of about 10 mm downstream of the jet inlet. This vortex was shed from the jet nozzle at an earlier time in

the forcing cycle. The corresponding axial velocity distribution is shown in the right upper image and shows

both upstream ow (negative values of velocity) at the outer edge of the vortex as well as downstream ow

(positive values of velocity) at the inner edge of the vortex. These positive and negative velocities result

from the superposition of the rotational motion of the vortex on the downstream motion of the jet uid.

The transverse velocity component is shown in the lower left image. Again, corresponding to the clockwise

rotation of the vortex, the transverse velocity is outward (positive) at the downstream edge of the vortex

and inward (negative) along the upstream edge of the vortex. The resulting vorticity �eld is seen in the

lower right image. Here the high positive (clockwise) vorticity indicates the vortex center. A region of lower

magnitude negative (counterclockwise) vorticity has also been induced in the ow and is located adjacent

to and below the positive vortex, thus forming a vortex pair of opposite signs. Small positive vorticity can

also be seen as a thin layer extending from the inner edge of the strong positive vortex and extending down

to the image bottom. This corresponds to the vorticity in the shear layer adjacent to the central jet. It is

commonly referred to as the braid region and extends from the vortex seen in the image to the following

vortex located upstream of the image �eld.

Similar velocity data was obtained at forcing frequencies of 7.5 Hz and 90 Hz for both nonreacting and

reacting ow conditions. The data taken in the nonreacting ow can be used to examine ow dynamics,

the production of vorticity due to shear and the subsequent dissipation of vorticity due to viscous forces.

The measurements also provide a data base for model validation under nonreacting ow conditions. The

reacting ow measurements can be used in conjunction with the OH imaging data to study the interaction

between uid dynamics and the ame properties. A time sequence of velocity vector and vorticity �elds over

one complete forcing cycle is shown for the nonreacting ow at 7.5 Hz forcing frequency in Figs. 12a and

12b, respectively. In each �gure six images are presented to show the time development of the velocity and

vorticity �elds during one forcing period. The images correspond to the same six delay times seen in the OH

images of Fig. 4. Here the �eld of view has been increased to 34�34 mm. Again, time t=0 corresponds to an
unforced jet prior to the inuence of the vortex. At t=11.1 ms, the vortex produced by forcing has just been

generated at the outer edge of the jet nozzle due to the high shear created between the high-velocity forced

inner jet uid and the slower moving outer coow air. Between t=11.1 ms and 66.7 ms, which corresponds to

the last image, the vortex is convected downstream. Comparison of the velocity vector and the vorticity �elds

shows that the vorticity is maximum in the vortex core at the jet inlet and decreases moving downstream

as the vorticity di�uses outward from the vortex core and is dissipated due to viscous forces. At this lower

forcing frequency the vortices are widely spaced so that only one vortex appears in the �eld-of-view at any

given time. As was seen in Fig. 11, the lower magnitude vorticity in the braid region generated by shear

layer velocity gradients is also apparent from the thin vertical band located approximately 6 mm to the right

of the jet centerline. The magnitude of the maximum vorticity generated by the forcing is about a factor of
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three higher than this shear generated vorticity.

A time sequence of the velocity and vorticity �elds for the nonreacting, 90 Hz forcing frequency ow

is shown in Figs. 13a and 13b, respectively. Again, the delay times correspond to those presented in Fig. 5

OH images for the 90 Hz forcing. In this case, due to the higher frequency, the spacing between vortices is

reduced to approximately 10 mm such that up to four vortices can be captured in the �eld of view. Here

the maximum magnitude of the vorticity resulting from forcing is nearly a factor of two higher than is the

7.5 Hz case. This higher magnitude is due to the greater amplitude of the forcing pulse in the 90 Hz case,

which generates a higher velocity pulse in the fuel jet and higher shear at the jet exit. Again the decay in

peak vorticity amplitude with downstream distance is apparent.

Results for the reacting 7.5 Hz case are presented in Figs. 14a and 14b. Time t=0 ms is prior to the

beginning of the forcing cycle and shows only the unperturbed velocity and vorticity �elds. In particular,

only the relatively small vorticity generated in the shear layer between the high velocity fuel jet and the

outer air ow is seen. At time t=11.1 ms the vortex generated by the forcing velocity pulse �rst appears at

the bottom of the image downstream of the jet nozzle lip. Two observations can be made. First, the vortex

moves downstream of the �eld-of-view by t=51.9 ms. The more rapid downstream motion of the vortex is

due to the higher axial velocities in the reacting ow. This is due to gas expansion resulting from combustion

heat release, which results in acceleration of gases as they pass through the ame front. Comparison with

the OH images in Fig. 4 shows that the ame front is located in the shear layer adjacent to the fuel jet and is

continuous downstream of the initial stabilization point, or ame base, which is located within about 5 mm

of the nozzle lip. As reactant gases pass through the amefront they are accelerated due to expansion as high

temperature combustion products are formed. This expansion maintains a higher convective velocity and the

vortex is convected more rapidly downstream. Second, the vortex strength, or magnitude of the vorticity,

decreases somewhat more rapidly in the reacting case. For example, comparison of the vortex strength

at t=66.7 ms in the nonreacting case with that at 33.3 ms in the reacting case (selected for comparison

since the location of the vortex center is at approximately the same location of x=22 mm) shows that the

maximum vorticity is 650 s�1 and 450 s�1 for the nonreacting and reacting cases, respectively. The more

rapid decrease in vortex strength with reaction present is due to increased viscosity at high temperature.

Vorticity of opposite sign is also seen both immediately downstream of the positive clockwise vorticity and

along the inside of the shear layer generated vorticity. The magnitude of this negative vorticity is about a

factor of three less than its positive counterpart.

Results for the reacting, 90 Hz case are shown in Figs. 15a and 15b. Again, multiple vortices can be

seen in the �eld-of-view due to the higher forcing frequency. Contributions to the vorticity from both the

shear layer and from the forcing velocity pulse are apparent. Vorticity of opposite sign, associated with

the positive clockwise rotating vortices and corresponding to vortex pairs, is again observed. Comparison

between the nonreacting and reacting 90 Hz cases shows, similar to the 7.5 Hz case, that for a given location

the magnitude of the vorticity in a vortex is somewhat lower in the reacting case. However, in contrast
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to the 7.5 Hz case, the more rapid downstream convection of a vortex structure in the reacting ow is not

apparent. The reason for this is not clear, but may be related to the reduced vortex spacing which increases

the interactions between adjacent vortices and may reduce the inuence of ame generated acceleration and

the ability with which vortices follow the mean convective ow.
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Figure 4. Time sequence of OH PLIF images at 7.5 Hz forcing frequency. The false color map indicates
OH mole fraction. Time increments are from instant of �rst noticable ame perturbation by
the vortex. Upper left image is de�ned as t=0. Left edge of each image coincides with jet
centerline.
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Figure 12a. Time evolution of the velocity vector �eld over one complete forcing cycle. Time delays shown
are from 0 to 133 ms from start of forcing cycle. Sequence starts from unperturbed ow at the
top left frame (t=0 ms) and proceeds from top to bottom. Image area is 34�34 mm. Left edge
of each image coincides with jet centerline. Nonreacting ow at 7.5 Hz forcing frequency.
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Figure 12b. Time evolution of the vorticity �eld over one complete forcing cycle. Time delays shown are
from 0 to 133 ms from start of forcing cycle. Sequence starts from unperturbed ow at the top
left frame (t=0 ms) and proceeds from top to bottom. Image area is 34�34 mm. Left edge of
each image coincides with jet centerline. Nonreacting ow at 7.5 Hz forcing frequency.
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Figure 13a. Time evolution of the velocity vector �eld over one complete forcing cycle. Time delays shown
are from 0 to 133 ms from start of forcing cycle. Sequence starts from unperturbed ow at the
top left frame (t=0 ms) and proceeds from top to bottom. Image area is 34�34 mm. Left edge
of each image coincides with jet centerline. Nonreacting ow at 90 Hz forcing frequency.
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Figure 13b. Time evolution of the vorticity �eld over one complete forcing cycle. Time delays shown are
from 0 to 133 ms from start of forcing cycle. Sequence starts from unperturbed ow at the top
left frame (t=0 ms) and proceeds from top to bottom. Image area is 34�34 mm. Left edge of
each image coincides with jet centerline. Nonreacting ow at 90 Hz forcing frequency.
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Figure 14a. Time evolution of the velocity vector �eld over one complete forcing cycle. Time delays shown
are from 0 to 133 ms from start of forcing cycle. Sequence starts from unperturbed ow at the
top left frame (t=0 ms) and proceeds from top to bottom. Image area is 34�34 mm. Left edge
of each image coincides with jet centerline. Reacting ow at 7.5 Hz forcing frequency.
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Figure 14b. Time evolution of the vorticity �eld over one complete forcing cycle. Time delays shown are
from 0 to 133 ms from start of forcing cycle. Sequence starts from unperturbed ow at the top
left frame (t=0 ms) and proceeds from top to bottom. Image area is 34�34 mm. Left edge of
each image coincides with jet centerline. Reacting ow at 7.5 Hz forcing frequency.
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Figure 15a. Time evolution of the velocity vector �eld over one complete forcing cycle. Time delays shown
are from 0 to 133 ms from start of forcing cycle. Sequence starts from unperturbed ow at the
top left frame (t=0 ms) and proceeds from top to bottom. Image area is 34�34 mm. Left edge
of each image coincides with jet centerline. Reacting ow at 90 Hz forcing frequency.
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Figure 15b. Time evolution of the vorticity �eld over one complete forcing cycle. Time delays shown are
from 0 to 133 ms from start of forcing cycle. Sequence starts from unperturbed ow at the top
left frame (t=0 ms) and proceeds from top to bottom. Image area is 34�34 mm. Left edge of
each image coincides with jet centerline. Reacting ow at 90 Hz forcing frequency.

43



5. Numerical Methodology

We model the jet ow using the low Mach number approximation, which is acceptable here because of the

low-speed ows of interest. We also use a two-dimensional ow model, since the experimental jet ow is

acoustically forced to generate organized 2D large-scale structures. Further, since the domain of interest is

open, the stagnation pressure po [47] is constant. Other assumptions will be outlined more speci�cally below.

The numerical scheme uses a coupled combination of an Eulerian �nite di�erence solution to the scalar

conservation equations and the Lagrangian vortex method [48] for the momentum equations. The Eulerian

solution uses Adaptive Mesh Re�nement (AMR) to allow e�cient computation over the large range of length

scales in the problem. The vortex method is also inherently adaptive. This combination leads to an e�cient

overall code for computing jet ow.

In the following we begin by discussing the model formulation followed by detailed descriptions of the

numerical scheme and other computational details in the present implementation.

5.1 Model Formulation

The full set of low Mach number reacting ow equations [49] along with the non-dimensionalization bases

are listed in Appendix A. We now proceed with further development of these equations.

The continuity equation is written in the conservative form:

@�

@t
+r � (�v) = 0 (1)

where, v = (u; v) is the velocity vector, and � is the density.

The energy equation is written in its general form using binary mass di�usion coe�cients:

�cp
DT

Dt
=

( � 1)



dpo

dt
+

1

RePr
r � (�rT )�Da

NX
i=1

hiwi �
�

ReSc

 
NX
i=1

Yicp;iVi

!
� rT

� ( � 1)



1

ReSD
r �

2
4T NX

i=1

NX
j=1

�
XjDT;i

WiDij

�
(Vi �Vj)

3
5� 


RePr
r � qR + _Q (2)

where, (�; T ) are density and temperature, po is the spatially constant stagnation pressure, cp is the mixture

speci�c heat at constant pressure, � is the mixture thermal conductivity, Da is the Damk�ohler number, hi is

the enthalpy of species i, wi is the chemical rate of production/consumption of species i, Sc is the Schmidt

number, Yi is the mass fraction of species i, Vi is the di�usion velocity of species i in the mixture, DT;i is

the thermal di�usion coe�cient, SD is de�ned in Appendix A, 
 and qR pertain to radiative heat transfer,

and _Q is an arbitrary heat source/sink term.

Further, for N -species, i = 1; : : : ; N , we have:

hi = hoi +

Z T

T o
cp;idT (3)
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Xi =
Yi

Wi

W (4)

W =

NX
i=1

XiWi (5)

=
1PN

i=1(Yi=Wi)
(6)

where, Xi is the mole fraction, Wi is the molar mass of species i, W is the mixture equivalent molar mass,

ci = Xi�=W = �Yi=Wi is the local concentration of species i, and [49],

rXi =

NX
j=1

XiXj

Dij

(Vj �Vi) + ST

�rT
T

� NX
j=1

XiXj

�Dij

�
DT;j

Yj
� DT;i

Yi

�
(7)

where ST is de�ned in Appendix A.

The energy equation (Eq. 2) can be simpli�ed given the reacting jet ow considered here. To begin

with, no external heat sources or sinks are considered, thus _Q is neglected. Further, given the relatively

small scale of the laboratory ow considered, and the low soot density resulting from the N2-diluted fuel

stream, radiation heat transfer is not expected to play a major role in the ow, and qR can also be neglected.

Moreover, the Soret e�ect [49] corresponding to the last term on the right hand side of Eq. 7, and the Dufour

e�ect [49] corresponding to the DT;i term in Eq. 2, are typically negligible in hydrocarbon ames, and will

be neglected here. If we, therefore, neglect these four terms and implement the open domain (constant po)

constraint, and let

wT = �
NX
i=1

hiwi; (8)

the energy equation becomes:

@T

@t
= �v � rT +

1

RePr

r � (�rT )
�cp

+Da
wT

�cp
� 1

ReSc

�PN
i=1 Yicp;iVi

�
� rT

cp
(9)

and, the formulation for Vi becomes:

rXi =

NX
j=1

XiXj

Dij

(Vj �Vi) (10)

Then, with the further approximation assuming one species (by convention, let us assume it is the N -th

species) is dominant, in the sense that all the other species are trace quantities in the mixture, relative to

the N -th one, we get [49],

YiVi = �DiNrYi (11)

where DiN is the binary mass di�usion coe�cient of species i into species N , and Vi is the di�usion velocity

of species i in the mixture. This assumption is acceptable in the present ow because of the presence of N2
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in dominant quantities (the dominant N -th species) both in the fuel and coow air streams. Thus, the �nal

2D energy equation becomes:

@T

@t
= �v � rT +

1

RePr

r � (�rT )
�cp

+
1

ReSc

Z � rT
cp

+Da
wT

�cp
(12)

Z =

NX
i=1

cp;iDiNrYi (13)

Of course, one must make sure the following identity is satis�ed:

NX
i=1

YiVi = 0 (14)

so, if Eq. 11 is used to �nd Vi, one does this only for species: (1; 2; � � � ; N�1), and evaluate VN from Eq. 14.

Another constraint that must be used is:
NX
i=1

Yi = 1 (15)

which is utilized again, to update YN , upon computing the new (Y1; � � � ; YN�1).
Next, let us write the dimensionless state equation :

po =
�T

W
(16)

and, for species i, the species conservation equation is:

�
DYi

Dt
= wiDa�

1

ReSc
r � (�YiVi); i = 1; : : : ; N (17)

Using the approximation for Vi, the �nal species conservation equation, is found to be:

@Yi

@t
= �v � rYi +

1

ReSc

r � (�DiNrYi)
�

+Da
wi

�
(18)

We note that transport properties of the gas mixture (�; �) are in general complicated functions of T ,

and Yi, i = 1; : : : ; N . Practically, since N2 is a dominant species, we use (�; �) = (�; �)N2
(T ), as was done

with binary di�usion coe�cients. Thermodynamic data (cp;i; hi) on the other hand, are known functions

of T , and cp =
P

Yicp;i.

Finally, wi, the dimensionless rate of production/consumption of species i, is given by the sum of

contributions of elementary reactions [49] with Arrhenius rates rk = AkT
bke�Ek=RT , k = 1 : : :M , including

forward and backward rates, and third body e�ciencies[50].

The discretization of the above scalar conservation equations on the adaptive mesh, as well as the

speci�cation of initial conditions, are described later. Scalar boundary conditions are as follows. At the

inow edge, shown in Figure 16, fuel and coow species mass fractions and temperature are speci�ed, while

a zero gradient boundary condition is imposed on the domain side edges for all scalars. At the outow edge,
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a convective outow boundary condition [51] is imposed, with a uniform normal outow velocity evaluated

as the mean of n � v in Eq. 54 below, along the outow edge.

We develop next the vorticity transport equation, and formulate the baroclinic and expansion �eld

source terms necessary for the coupling between the Eulerian and Lagrangian schemes.

The dimensionless equations governing the momentum of a uid are [52],

Dv

Dt
= �rp

�
+

1

Re

�

�
+

1

Fr
g (19)

where �, the divergence of the deviatoric stress tensor, is given in indicial notation by

� =
@�ji

@xj
=

@

@xj

�
�2

3
��ij

@uk

@xk
+ �

�
@ui

@xj
+
@uj

@xi

��
: (20)

In this work, the uid velocity is determined indirectly by describing the transport and production of

vorticity from a vorticity-form of Eq. 19, and then determining the velocity from the vorticity �eld, the

potential velocity �eld accounting for the domain boundaries, and as will be seen below, the expansion

velocity �eld which occurs as a result of combustion heat release.

In order to obtain an evolution equation for vorticity (! = r�v), the curl operator is applied to Eq. 19,
to obtain (using r� g = 0),

@!

@t
+ (v � r)! + !(r � v)� (! � r)v =

r��rp
�2

+
1

Re
r� �

�
: (21)

In this form, baroclinic generation of vorticity involves the pressure. A vorticity formulation that does not

contain pressure can be obtained by applying the curl operator to Eq. 19 multiplied by �. This yields

@!

@t
+ (v � r)! + !(r � v) � (! � r)v =

1

�
r�� (

1

Fr
g � Dv

Dt
) +

1

Re

r��

�
: (22)

We note that, while maintaining the generality of Eqs. 21-22, the following identity holds in 2D,

(! � r)v = 0: (23)

The choice of which equation to use (21 or 22) will be made based on the evaluation of their baroclinic and

viscous terms, as will be discussed below. The formulations to obtain the velocity �eld will also be described.

First, the Lagrangian interpretation of these equations is discussed, as provided by a kinematic analysis. This

provides the basis for the Lagrangian transport algorithm that is used to describe the convective transport

of circulation.

Evolution Equations for Circulation

If the density �eld were constant (so there could be no baroclinic generation of vorticity) and deviatoric

stresses are omitted (as for inviscid ow), then Eq. 21 and Eq. 22 would become the Euler equations for the

convective transport of vorticity:

@!

@t
+ (v � r)! + !(r � v)� (! � r)v = 0: (24)
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This equation can be shown to be equivalent to the following Lagrangian system of equations for vorticity

! at uid points x being convectively transported by a a velocity �eld v (r � v 6= 0):

dx(t)

dt
= v(x); (25)

d

dt

Z
A

!(x) � dA = 0: (26)

To show this equivalence, we begin by considering the transport of an arbitrary vectorB on a di�erential

uid surface area element dA with unit normal vector n so that dA = ndA,

d

dt

Z
A

B � ndA =

Z
A

[
@B

@t
+ (

dx

dt
� r)B] � dA+

Z
A

B � d(ndA)
dt

: (27)

The velocity dx=dt is an arbitrary velocity, but will be chosen to be the uid velocity. The key aspect of

Eq. 27 is the time-rate-of-change of the di�erential area element dA, which is

d(ndA)

dt
= ndA(r � dx

dt
)�r(dx

dt
) � ndA; (28)

where r(dx=dt) is a tensor; in indicial notation

r(dx
dt
) � n = ni

d

dxj
(
dxi

dt
): (29)

For more detail, see Truesdell[53], p. 55, Eq. 26.4, and Dishington[54].

Substituting Eq. 28 in the integrand of the last integral in Eq. 27 yields

B � d(ndA)
dt

= B � ndAr � (dx
dt
)�B � r(dx

dt
) � ndA; (30)

and Eq. 27 becomes a surface transport theorem for vectors,

d

dt

Z
A

B � ndA =

Z
A

[
@B

@t
+ (

dx

dt
� r)B+B(r � dx

dt
)� dx

dt
� (rdx

dt
)] � ndA: (31)

Finally, choosing dx=dt = v (Eq. 25), and setting the arbitrary vector B to be the vorticity vector ! yields

d

dt

Z
A

! � ndA =

Z
A

[
@!

@t
+ (v � r)! + !(r � v) � (! � r)v] � ndA: (32)

Note that the left hand side of Eq. 24 is the integrand in Eq. 32. Thus, in the case of inviscid constant-density

ow the integral vanishes, the circulation is conserved, and Eq. 26 is produced. Therefore, translating the

surface at the local uid velocity (i.e., solving dx=dt = v), and keeping the circulation constant implies

satisfaction of Eq. 24, even if the velocity �eld is non-solenoidal (i.e. r�v 6= 0). So, for constant circulation,

kinematics and inviscid constant density dynamics are equivalent (even if the velocity �eld is non-solenoidal).

Returning, however, to the viscous variable-density ow represented in Eq. 21 and Eq. 22, the RHS inte-

grand of Eq. 32 becomes non-zero and accounts for the baroclinic generation and viscous dissipation terms.
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Substitution of Eq. 21 or Eq. 22 into the RHS of Eq. 32 produces the following two versions (respectively)

of an evolution equation for the Lagrangian representation of circulation:

d

dt

Z
A

! � ndA =

Z
A

dA � [r��rp
�2

+
1

Re
r� �

�
] (33)

and
d

dt

Z
A

! � ndA =

Z
A

dA � [ 1
�
r�� (

1

Fr
g � Dv

Dt
) +

1

Re

r��

�
]: (34)

The next section investigates the selection of one of these two equations for use in evaluation of the baroclinic

and viscous momentum terms.

Evaluation of Baroclinic and Viscous Source Terms

Whether we choose Eq. 33 or Eq. 34 for the evaluation of these terms, the coupled scheme will have to

use scalar values and spatial derivatives from the Eulerian mesh to compute the rate change of circulation.

The temperature �eld, and hence the density and viscosity, are only known on the Eulerian mesh, and it

therefore makes the greatest sense to directly evaluate the chosen equation directly on this mesh, on which

the velocity �eld is also known.

The pressure, however, is an unknown; therefore Eq. 34 is preferable to Eq. 33. The pressure could

be found from a Poisson equation, as obtained by applying the divergence operator to the Navier-Stokes

equations:

r2p = �r � [�(v � r)v � �

Fr
g � 1

Re
�+ �

@v

@t
]: (35)

The principal di�culties in solving this Poisson equation for the pressure are twofold. First, the pressure

boundary conditions are not known. Second, the non-uniformity of the mesh precludes a fast poisson solver,

leading to the use of an iterative solver, which is particularly costly in a parallel implementation. The

alternate approach, using the latter formulation of Eq. 34, which contains the unkown acceleration instead

of the pressure, has been discussed by Tryggvason [55], where the acceleration is considered through taking

the time derivative of the integral equation for the velocity �eld (including the e�ects of uid areas and

volumes). The discrete form of this equation becomes a matrix equation with rank equal to the number of

Lagrangian elements. Our approach has been to approximate Dv=Dt based on values of velocity on the grid

from current and previous time-planes, as will be further discussed below.

The viscous term of the vorticity transport equation,

r��

�
(36)

can be expressed simply as �r2!, if the uid viscosity is spatially uniform and the ow is divergence free.

Neither of these conditions is applicable for the combustion ow of interest, and there is no signi�cant

simpli�cation from the form in Eq. 36. The complexity of this term essentially precludes a gridless approach
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at the present time. Thus, as discussed in the numerical implementation section, this term is evaluated using

a �nite di�erence methodology using the same grid as for scalar transport.

Calculation of the Velocity Field

In the context of a vorticity formulation, the velocity �eld must be calculated from the vorticity �eld. The

velocity divergence due to combustion heat release, and the potential velocity �eld dictated by the domain

boundaries, must also be included in calculating the velocity �eld. The approach used here is based on the

well-known kinematic Helmholtz decomposition of a velocity �eld into additive contributions from the curl of

the velocity �eld (the vorticity �eld), the divergence of the velocity �eld, and the normal velocity boundary

condition [56],

v = v! + vD + vp (37)

where v! is the velocity induced by the vorticity �eld in the unbounded simply-connected domain R1,

v! =

Z
R1

!(x0)� g(x;x0)dR(x0); (38)

and,

g(x;x0) =
�1

2�(d� 1)

x� x0

jx� x0jd (39)

is the gradient of the in�nite domain Green's function for Poisson equations (d = 2 in 2D, d = 3 in 3D).

Variables of integration are denoted with primes.

The second term in Eq. 37, vD, is the velocity induced by the divergence of the velocity �eld, D = r�v,
in the in�nite domain,

vD =

Z
Rinf

D(x0)g(x;x0)dR(x0): (40)

We evaluate the velocity divergence using the continuity and state equations,

D = r � v = �1

�

D�

Dt
=

1

T

DT

Dt
� 1

po

dpo

dt
� 1

W

DW

Dt
(41)

where, for an open domain dpo=dt = 0, and,

DW

Dt
= �W 2

NsX
i=1

1

Wi

DYi

Dt
(42)

DYi

Dt
= Da

wi

�
+

1

ReSc

r � (�DiNrYi)
�

(43)

thus,

r � v =
1

T

DT

Dt
+W

NX
i=1

1

Wi

DYi

Dt
(44)

The last term in Eq. 37, vp, is a divergence-free irrotational velocity �eld which is represented as the

gradient of a scalar potential function,

vp = r�: (45)
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The irrotational constraint is satis�ed implicitly by this form, since r�r� = 0, and the governing equation

for the potential function is obtained by requiring r� to be divergence free,

r � r� = 0 (46)

in the domain. The normal velocity boundary condition (n is the outward pointing unit normal vector) is

imposed as a Neumann boundary condition on Eq. 45,

n � r� = n � v � n � [v! + vD ]; (47)

The boundary integral solution to Eq. 46 for �, is,

�(x)�(x) =

Z
D

��(x0)n(x0) �G(x;x0)dR(x0) +
Z
D

�n(x0) � r�(x0)G(x;x0)dR(x0) (48)

where � = 1 in the domain, � = 0 outside the domain, and on the boundary, � is the internal angle of the

boundary; for points on smooth boundaries � = 1=2.

The gradient operator can be applied to Eq. 48, to obtain an expression for r� without the use of

discrete gradient operators. (Note that the analytical gradient operator applies only to the Green's function

terms in the integrals.) The di�culty with this approach is that the integral on the left hand side appears

to be hyper-singular on the boundary, so that determination of the velocity on or near the boundary is

error-prone.

It is not well-recognized, but can be readily shown, that the gradient of the integrals on the right hand

side of Eq. 48 are actually integrably singular (not hyper-singular) and can be expressed as, (with g = �rG)

�(x)r�(x) =
Z
D

[�n(x0)�r�(x0)]� g(x;x0)dR(x0) +

Z
D

[�n(x0) � r�(x0)]g(x;x0)dR(x0): (49)

See also Stratton [57], Morse and Feshbach [58], Byhkovskiy and Smirnov [59], Wu, et al. [60,61,62,63],

Morino [64,65], Uhlman and Grant [66], Meir and Schmidt [67].

This equation allows the tangential velocity on the boundary to be solved directly from the normal

velocity boundary condition, thus providing the desired accuracy for velocities on or near the boundary.

Outow Boundary Conditions

For the present ow, normal velocity boundary conditions are speci�ed on the inow and side edges of the

domain, as shown in Figure 16, but the normal velocity is not known a priori at the outow edge. This

section describes the method used to determine the velocity on the outow boundary. The outow velocity is

determined by �nding a uniform potential velocity on the outow boundary which, when considered with the

Biot-Savart velocity and expansion source velocity, satis�es certain kinematic constraints on the problem.

Consider our two-dimensional domain, shown in Figure 16, with areaA and arc length s on the boundary.

For a velocity �eld v , the divergence theorem givesZ
A

r � vdA =

Z
C

n � vds: (50)
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Divide the closed boundary integral into two open integrals: one integration is over the inow and sides, and

another integral is over the outow boundary to yield,

Z
A

r � vdA =

Z
inow; sides

n � vds+
Z
outow

n � vds: (51)

Now consider the previously mentioned kinematic representation of the velocity �eld v = v!+vD+vp.

For known velocity divergence and vorticity, the velocities v! and vD are known from the in�nite domain

integrals, Eqs. 38 and 40.

Integrating the normal component of the velocity over the outow boundary yields

Z
outow

n � vds =
Z
outow

n � [v! + vD ]ds+

Z
outow

n � vpds: (52)

Only the last term on the right hand side is unknown. The left hand side of the equation is known from

Eq. 51 since r�v is known and the normal velocity is known on the inow and sides of the domain. The �rst

term on the right hand side is known since v! and vD are known.

Next, assume that n � vp is uniform on the outow boundary, and takes on the value,

n � vp =

Z
outow

n � vds�
Z
outow

n � [v! + vD ]dsZ
outow

ds

(53)

In this outow model, the shape of the normal velocity pro�le on the outow boundary is determined

entirely by v! and vD . The normal velocity on the outow boundary is then

n � v = n � vp + n � (v! + vD); (54)

which allows the tangential velocity to be determined on the outow boundary in the same manner as on

all the other boundaries. That is, the normal velocity in known everywhere, and the tangential velocity can

be determined from the potential ow problem.
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un = 0

uτ = ?

un = f(x)

uτ = ?

un = g(x)

uτ = ?

un = h(x)

uτ = ?

un = 0

un = f (Outflow Boundary Condition), uτ = ?

uτ = ?

Figure 16. Schematic of the computational domain showing the speci�cation of velocity boundary condi-
tions.

53



5.2 Numerical Scheme

The construction of the numerical scheme is discussed in detail. We describe the adaptive mesh re�nement

strategy, the discretization of the scalar conservation equations, and the evaluation of the vorticity/expansion

source terms on this mesh. We also present the discretization of the Lagrangian vorticity transport equation,

the expansion �eld, and the boundary element solution for the potential velocity, as well as the fast multipole

method implementation for the evaluation of velocity �elds. Finally, the the coupled Lagrangian-Eulerian

time integration scheme is presented.

5.2.1 Adaptive Mesh Re�nement

In recent years, adaptive methods for solving partial di�erential equations have been growing in popularity

[68]. With problems becoming more complex through multi-dimensional and nonlinear e�ects, the automa-

tion provided by adaptivity provides, perhaps, the only reasonable way to address them. Early adaptive

techniques of mesh motion have been giving way to methods that combine mesh re�nement/coarsening with

order variation [68]. In this regard, adaptivity for partial di�erential equations is following the path of similar

strategies used for ordinary di�erential equations [69].

In this work, we have enhanced our Eulerian method for the solution of the scalar transport equations

with an adaptive mesh-re�nement strategy. With adaptive mesh re�nement, a spatial error estimate is used

to determine which regions of the computational domain need greater resolution to maintain the solution's

estimated error below a user-de�ned tolerance. Cells in high-error regions are subdivided into �ner cells. A

local time stepping strategy is used [70]; that is, re�nement is performed in both space and time to maintain

the CFL and Fourier conditions on re�ned meshes. The solution is obtained on each mesh level recursively,

with smaller time steps being taken on �ner meshes.

To reduce the overhead of creating new re�ned elements at each base mesh time step, we retain the

re�ned meshes from previous steps, with the idea that the high-error regions in the next time step will

coincide to a large degree with high-error regions in the previous time step. Thus, when a re�ned element's

error falls below a user-de�ned percentage Hmin of the tolerance, we must explicitly coarsen the element by

deleting its underlying �ne elements. Low-error elements are not coarsened, however, if a di�erence of more

than one level of re�nement at coarse/�ne mesh interfaces would result from the deletion of the underlying

�ne elements. Thus, elements are not coarsened if their neighboring elements have two levels of re�nement

along their shared edge.

In the development of our adaptive mesh re�nement code, we began with the code of Devine and

Flaherty [71]. Their code used a local �nite element method with adaptive mesh and order enrichment

to solve hyperbolic systems on two-dimensional uniform meshes. While our numerical approach di�ers

from theirs, we were able to use their underlying data structures, parallel mesh re�nement implementation,

dynamic load-balancing algorithm, and data migration strategies to reduce the code development e�ort.
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Data Structures

We use the quadtree data structure to implement mesh re�nement for 2D meshes. The quadtree data

structure has been used in many serial adaptive mesh re�nement codes [68] and mesh generators [72]. In the

quadtree data structure, coarse-mesh elements are divided into some number of �ner elements. These �ne

elements are stored as \children" of the coarse-mesh \parent" element in a hierarchical tree data structure

(see Figure 17). While this data structure has higher storage and bookkeeping overhead than other re�nement

methods [70], it has several advantages that make it attractive. Coarsening a re�ned mesh can be done easily

by removing child elements from the mesh and the quadtree data structure. Since information is available on

several mesh levels, we are able to easily perform re�nement in both space and time rather than restricting

the time step size in all regions of the domain to the smallest time step. Pointers between children and the

parents are maintained to simplify interpolation operations between mesh levels.

Time Integration

Within the Eulerian section of the code, we use a second-order explicit Runge-Kutta method for time

integration. The two-stage method for solving initial value problems of the form

d

dt
Y (t) = f(t; Y ); Y (0) = Y0; (55)

can be written as

Y (tn +�t) � Yn+1 = Yn +�t(
1

2
K1 +

1

2
K2) (56)

where

K1 = f(tn; Yn) (57)

K2 = f(tn +�t; Yn +�tK1) (58)

are the intermediate results of each stage.

In Figure 18, we outline the local time stepping algorithm with adaptive re�nement. The solution and

error estimate for one time step (from t to t+�t) are computed on the base mesh using the Runge-Kutta

method (Eqs. 56-58). High-error elements are divided into m�m �ne elements. Elements sharing edges or

vertices with high-error elements are also re�ned to provide a bu�er zone between high and low-error regions

and maintain a di�erence of at most one mesh level across edges of re�ned regions. Solution values on the

re�ned elements at time t are obtained by projection of the coarse-mesh solution to the �ne elements. The

time step is also re�ned on the �ner mesh, so that m2 time steps of size �t=m2 are taken on the �ne mesh

to solve to time t + �t. This time step scaling is based on a di�usional numerical stability criterion, and

could be altered depending on the particular prevailing stability or accuracy constraints on �t. Second-

order temporal interpolation on coarse elements is used to provide �ne-mesh boundary conditions across
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coarse/�ne mesh interfaces at intermediate Runge-Kutta stages on the �ne mesh. The process of solving,

re�ning and recursively solving is repeated on the �ne mesh. After m2 time steps on a �ne mesh level,

solutions from �ne elements are interpolated to their coarse parent elements.

Interpolation Between Meshes

When new �ne elements are created, their initial values are determined by biquadratic interpolation of the

values on the parent mesh to the �ne cells. Scalar initial values Y (xf ; yf ) for a �ne cell 
f are needed at

its cell center (xf ; yf ). By associating interpolation functions with the coarse parent cell 
i;j and its eight

neighboring cells 
i�1;j , 
i;j�1, and 
i�1;j�1, the scalar value Y (xf ; yf ) can be represented as follows:

Y (xf ; yf ) =

1X
k=�1

1X
l=�1

�i+k;j+l(�; �)Y (xi+k ; yj+l); (59)

where

�i�1;j(�; �) =
1

2
�(� � 1)(1� �2); (60)

�i;j�1(�; �) =
1

2
�(� � 1)(1� �2); (61)

�i�1;j�1(�; �) =
1

4
��(� � 1)(� � 1); (62)

�i;j(�; �) = (1� �2)(1� �2); (63)

� =
2(xf � xi�1)

xi+1 � xi�1
� 1; (64)

� =
2(yf � yj�1)

yj+1 � yj�1
� 1; (65)

and (xi�k ; yj�l) is the center of cell 
i�k;j�l.

When the solution on a �ne mesh has been computed to the end of a coarse-mesh time step, the �ne

mesh solution is interpolated to the coarse mesh. Form�m re�nement, scalar values Y (xc; yc) in each coarse

cell 
c are replaced by interpolants based on the values in the �ne child cells 
i;j , i; j = 0; 1; : : : ;m� 1 and

their �ne-mesh neighbors. If m is odd, the mid-point of the center child element 
bm
2
c;bm

2
c aligns with the

mid-point of 
c. Thus, we take this �ne-mesh value directly as the new coarse-mesh value. When m is

even, the mid-point of 
c does not align directly with any child cells, so we use a biquadratic interpolation

of the child cell values. Taking Taylor-series expansions of Y (xi; yj), i; j = 0; 1; : : : ;m � 1, with respect to

Y (xc; yc), summing the expansions and solving for Y (xc; yc), we get

Y (xc; yc) �
1

m2

m�1X
i=0

m�1X
j=0

Y (xi; yj)�
1

24

m2 � 1

m2
(�x2

@2

@x2
Y (xc; yc) + �y2

@2

@y2
Y (xc; yc)) (66)

where �x and �y are the mesh spacings on 
c. We approximate the second derivative terms in each

coordinate direction as follows,
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@2

@x2
Y (xc; yc) �

m2

4�x2
(Y (xm

2
+1; ym

2
�1) + Y (xm

2
+1; ym

2
)

� Y (xm
2
; ym

2
�1)� Y (xm

2
; ym

2
)

� Y (xm
2
�1; ym

2
�1)� Y (xm

2
�1; ym

2
)

+ Y (xm
2
�2; ym

2
�1) + Y (xm

2
�2; ym

2
)); (67)

@2

@y2
Y (xc; yc) �

m2

4�y2
(Y (xm

2
�1; ym

2
+1) + Y (xm

2
; ym

2
+1)

� Y (xm
2
�1; ym

2
)� Y (xm

2
; ym

2
)

� Y (xm
2
�1; ym

2
�1)� Y (xm

2
; ym

2
�1)

+ Y (xm
2
�1; ym

2
�2) + Y (xm

2
; ym

2
�2)): (68)

Mesh Interfaces

Within each mesh level, cells are categorized as internal or external (see Figure 19). Internal cells lie within

the problem domain; on them, the �nite di�erence discretization of the scalar equations is applied. A row

of external cells is provided along each edge of the problem domain to facilitate the calculation of outow

boundary conditions. Solution values for external cells are determined by boundary conditions. Even though

the �nite di�erence stencil requires a second set of values outside the domain, a second row of external cells

is not stored. Instead, symmetry with values in the domain is used to simulate a second row of cells in the

application the �nite di�erence stencil.

At the interface between coarse and �ne meshes, two rows of green cells are used to provide interface

conditions between the coarse and �ne cells and allow straightforward application of the �nite di�erence

stencil on �ne meshes. The �nite di�erence discretization is not used to obtain solution values on green

cells. Rather, the green cells' values are determined by spatial and temporal interpolation of their coarse

parent elements' values. The spatial interpolation (Eq. 59) used to initialize �ne-mesh cells is used on the

green cells, along with the following high-order temporal interpolation based on high-order Runge-Kutta

collocation methods.

The general structure of an s-stage Runge-Kutta method for solving initial value problems such as

Eq. 55 is

Y (tn +�t) � Yn+1 = Yn +�t

sX
i=1

biKi; (69)

Ki = f(tn + ci�t; yn +�t

sX
j=1

aijKj); i = 1; 2; : : : ; s; (70)

where �t is the time step size, yn is the approximation of the solution at tn, and bi, ci, and aij , i; j =

1; 2; : : : ; s, are determined by the speci�c Runge-Kutta formula. For explicit Runge-Kutta methods such as
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the one used in this work, aij = 0 for j � i. Two consistency conditions for Runge-Kutta methods are used

in the development of the interpolation formulas:

sX
j=1

aij = ci; i = 1; 2; : : : ; s; (71)

and
sX

j=1

aijc
k�1
j =

1

k
cki ; k = 1; 2; : : : ; p; (72)

where p is the order of the Runge-Kutta method.

Interpolate Y (t) as

Y (t) = Y (tn + ��t) � yn +�t

pX
l=1

�l�
l; � =

t� tn

�t
: (73)

Then,

d

dt
Y (t) =

d

dt
Y (tn + ��t) � �1 +

pX
l=2

�ll�
l�1 = f(tn + ��t; yn +�t

pX
l=1

�l�
l): (74)

Assuming cj , j = 1; 2; : : : ; s are distinct, collocate Eq. 74 with � = cj to get

d

dt
Y (tn + cj�t) = �1 +

pX
l=2

�llc
l�1
j = f(tn + cj�t; yn +�t

pX
l=1

�lc
l
j); j = 1; 2; : : : ; s: (75)

Multiplying Eq. 75 by aij , summing over j, and rearranging terms yields

sX
j=1

aij�1 +

pX
l=2

2
4 sX
j=1

aijc
l�1
j

3
5 �ll = sX

j=1

aijf(tn + cj�t; yn +�t

pX
l=1

�lc
l
j); (76)

for i = 1; 2; : : : ; s. Applying the consistency conditions Eqs. (71-72) to Eq. 76 gives

pX
l=1

�lc
l
i =

sX
j=1

aijf(tn + cj�t; yn +�t

pX
l=1

�lc
l
j); i = 1; 2; : : : ; s: (77)

Substituting Eq. 77 into the right hand side of Eq. 75 produces a system of equations for the �j , j = 1; 2; : : : ; p:

�1 +

pX
l=2

�llc
l�1
j = f(tn + cj�t; yn +�t

pX
k=1

ajkf(tn + cj�t; yn +�t

pX
l=1

�lc
l
k)) = Kj : (78)

With the local time-stepping strategy, Kj , j = 1; 2; : : : ; s, on each coarse element are already computed

when the �ne mesh is being solved. Thus, we use Eq. 78 and Kj on the coarse element to determine the �l,

l = 1; 2; : : : ; p, and then interpolate the green elements' solution values at the desired time using Eq. 73.

For our second-order Runge-Kutta method (Eqs. 56-58) we approximate Y (t) as in Eq. 73 as

Y (t) = Y (tn +�t�) � Yn +�t(�1� + �2�
2) (79)

where

�1 = K1; and �2 =
1

2
(K2 �K1): (80)

The resulting outline of the function perform runge kutta time step of Figure 18 is shown in Figure 20.
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Figure 17. Adaptive re�nement of an initial cell (cell 0) into three levels (left) and the corresponding
quadtree data structure (right).
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void adaptive mesh re�nement(mesh, tstart, tfinal, �t, TOL)
f

t = tstart;
while (t < tfinal) f

perform runge kutta time step(all elements of mesh);
fine mesh = mesh! nextmesh;
for each element of mesh f

error estimate = calc estimate(element);
if ((error estimate > TOL) && (element not yet re�ned)) f

re�ne element into �ne elements(element);
add new elements(fine mesh);

g else if ((error estimate < Hmin � TOL) && element already re�ned) f
mark element for coarsening(element);

g

g

if (mesh is re�ned) f
bu�er(fine mesh);
project coarse data for newly re�ned elements(mesh, fine mesh);
coarsen marked elements and remove underlying �ne elements();
adaptive mesh re�nement(fine mesh, t, t+�t, �t=m2, TOL=m2);
interpolate �ne solution to coarse mesh(fine mesh, mesh);

g

t = t+�t;
g

g

Figure 18. Algorithm for the adaptive mesh re�nement strategy.
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Figure 19. A re�ned mesh showing internal (white), external (dark grey) and green (light grey) cells.
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void perform runge kutta time step(mesh, t, �t)
f

if (meshlevel > 0)
update green element values(mesh, t);

perform �rst RK stage(all elements of mesh, t, �t);/* compute K1 */
if (meshlevel > 0)

update green element values(mesh, t+�t);
perform second RK stage(all elements of mesh, t, �t); /* compute K2 and Yn+1*/

g

Figure 20. Outline of the function perform runge kutta time step including interpolation of coarse mesh
values to green elements.
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5.2.2 Eulerian Discretization of the Scalar Conservation Equations

The energy equation and N � 1 scalar equations are discretized on the Eulerian multi-layered adaptive

mesh, using second-order di�erence formulations. Di�usive terms are discretized using centered second-

order di�erences. The convective terms are discretized using a second-order Godunov upwind scheme [73,74],

resulting in a convective scheme that is stable to arbitrary grid Reynolds or Peclet numbers. The Pe number

stability characteristic of this construction is necessary for stable time integration of the scalar equations on

the coarsest mesh levels, with largest Pe. Given these spatial discretizations, the resulting computational

stencil at cell (i; j) spans the nine cells f([i�2; i+2]; j); (i; [j�2; j+2])g. Further, the corner cells (i�1; j�1)
are needed for numerical interpolations, such that the overall necessary stencil includes 13 points.

On any particular mesh level, the spatial discretization is based on a uniform mesh in both directions.

In order to avoid cumbersome conditions on derivative discretizations at mesh boundaries, both internal and

at the domain edges, two rows of green cells are created around each mesh patch, extending beyond each

mesh boundary. As indicated earlier, scalar and velocity values at these cells are found by interpolation

from their coarser-mesh parents and neighbors. Thus the evaluation of the right-hand-sides of the scalar and

energy conservation equations is concerned only with uniform rectangular meshes.

The spatial discretization of the temperature energy equation (Eq. 12) at cell (i; j) is given by :

@T

@t

���
ij
= �~uij

g@T
@x

���
ij
� ~vij

g@T
@y

���
ij

+
1

RePr(�cp)ij

�
1

hx

�
(�
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+

1

hy
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+
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#

+
Da

(�cp)ij
(wT )ij (81)

where, (~uij ; ~vij) are determined from the cell/neighbors wall velocities based on the procedure detailed in

Appendix B, and ( g@T=@xjij ; g@T=@yjij) are found based on the cell/neighbors wall velocities and temperature
values, as shown in Appendix C. These appendices detail the second order upwind Godunov implementation

used for the discretization of all convective derivative terms in this work. The subscript i+1=2 refers to the

midpoint of the right wall of cell (i; j), with

(�
@T

@x
)i+1=2;j =

1

2
(�ij + �i+1;j)

1

hx
(Ti+1;j � Tij); (82)

and similarly for (i�1=2; j) and (i; j�1=2). Finally, @Yk=@xjij is found by a centered di�erence formulation,
@Yk=@xjij = (Yk;i+1;j � Yk;i�1;j)=(2hx), and similarly for @Yk=@yjij .

The discretization of the species conservation equation (Eq. 18) is given by a similar formulation, for

species k,
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wk;ij (83)

where, ( g@Yk=@xjij ; g@Yk=@yjij) are found as shown in Appendix C, �k = �DkN , and (�k@Yk=@x)i+1=2;j and

other di�usive terms are evaluated as in Eq. 82.

The coupling to the Lagrangian scheme requires the evaluation of the baroclinic and viscous circulation

source terms in Eq. 34, which we de�ne here as,

Bij =
1

�ij
(r�)ij � (

1

Fr
g� Dv

Dt

���
ij
)hxhy (84)

Vij =
1

Re

(r��)ij
�ij

hxhy (85)

where centered di�erence discretizations are used for all terms. Similarly, the expansion �eld Dij is evaluated

from Eq. 44, using the above discretization in Eqs. 81 and 83,

Dij =
1

Tij

DT

Dt

���
ij
+W ij

NX
k=1

1

Wk

DYk

Dt

���
ij
: (86)
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5.2.3 Lagrangian Discretization of the Vorticity Transport Equation

We discuss here the discretization of the vorticity, expansion, and potential �elds, and the resulting evaluation

of the velocity �eld. We also describe the vortex element redistribution strategy, to ensure both accuracy

and e�ciency of the velocity computations.

Discretization of the Vorticity Field

The vorticity �eld !(x; y) is discretized using Lagrangian vortex elements, such that

!(x; y) �
X
k

�kf�(
rk

�
)

where �k is the strength or circulation assigned to element k, rk = ((x�xk)2+(y�yk)2)1=2, � is the element
core radius, and f� is a smooth compact core function with

R
f�(r)dr = 1. Speci�cally, we use a second-order

gaussian core function, f�(r) = (1=��2) exp(�r2).
Given a vorticity �eld w(x; y), the above discretization (the assignment of element locations and

strengths) is accomplished using an underlying uniform mesh of cell size h! � h!, such that an element

is created at the center of cell (xk; yk) with strength �k = !(xk; yk)h
2
!, when �k is above a given threshold.

The core radius is chosen to provide necessary overlap [75], with � = h0:9! . This procedure is used both

at t = 0 to discretize the initial vorticity �eld, and for creation of new elements when necessary due to

baroclinic and viscous circulation source terms (Eqs. 84-85). This construction allows the use of the same

core radius for all vortex elements. On the other hand, it leads to large numbers of vortices to be created

on coarse AMR mesh levels. Thus if h! is chosen to be equal say to the �nest AMR mesh cell size, then the

next coarser mesh generates 4 elements per AMR mesh cell, followed by 16, 64, : : : per cell on successively

coarser meshes.

Discretization of the Expansion Field

The dilatation/expansion �eld D(x; y) = r�v is evaluated from Eq. 86 at each leaf-cell center on the adaptive

mesh. This �eld is discretized using expansion source elements created on a uniform mesh with hD � hD

cells, with strengths �k = D(xk; yk)h
2
D, and core functions g�, such that

D(x; y) �
X
k

�kg�(
rk

�
):

We choose the same gaussian core function as for the vortices, with similar consequences of the constant

core radius constraint on the total number of sources generated per AMR leaf cell.

Evaluation of the Velocity Field

As mentioned earlier, the velocity �eld is evaluated from the vorticity �eld, the divergence of the velocity,

and the normal velocity boundary condition using the Helmholtz decomposition,

v = v! + vD + vp; (87)

65



where v! and vD are de�ned in the in�nite domain, with r�v! = !, and r �vD = r�v. The evaluation of
v!(x; y) from the vortex element distribution is based on the Biot-Savart law, or the discretization of Eq. 38,

v! =
X
k

��k
2�

[(y � yk);�(x� xk)]

r2k

�
1� e�r

2
k=�

2
�
: (88)

where the summation is over all vortex elements. Similarly vD is found from a similar discretization of

Eq. 40, summing over all expansion sources,

vD =
X
k

�k

2�

[(x� xk); (y � yk)]

r2k

�
1� e�r

2
k=�

2
�
: (89)

The potential velocity �eld vp = r� is a divergence-free, irrotational velocity �eld on the bounded

domain, and is found from the Laplace equation,

r � r� = 0 (90)

with the (Neumann) normal velocity boundary condition

n � r� = n � [v � v! � vD ]: (91)

Solution of the Laplace Equation

As described earlier, the solution for r� can be written in terms of boundary integrals containing the normal

and tangential velocities on the boundary,

�(x)r�(x) =
Z
S

[�n(x0)�r�(x0)]� g(x;x0)dS(x0) +

Z
S

[�n(x0) � r�(x0)]g(x;x0)dS(x0): (92)

Inside the domain, � = 1, outside the domain, � = 0, and on the boundary, � = �=2�(d � 1) , where �

is the internal angle of the boundary; for points on smooth boundaries � = 1=2. g is the gradient of the

in�nite domain Green's function for Poisson equations. S is the surface of the uid domain. Primes indicate

variables of integration.

This equation allows the tangential velocity to be found directly from the speci�ed normal velocity. The

two integrals in this formulation are vortex sheets and source sheets, which are singular representations of

vorticity and volume sources. As a result, the velocity in the domain can be evaluated directly using the

same parallel multipole expansion methods as those used to evaluate v! and vD .

The governing equation is a vector Fredholm equation, and all components are satis�ed by the solutions

n � v and n � v. Next, we address the issue of which component of the governing equation to solve for

tangential velocity n� v with speci�ed normal velocities n � v.
The tangential component of Eq. 92 is a Fredholm equation of the second kind for the unknown n� v,

since n� v appears on the left hand side of the equation, so a discrete form of this equation will yield a
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diagonally dominant matrix. The normal component of Eq. 92 is a Fredholm equation of the �rst kind, which

results in a matrix with zero's on the diagonal, which is an inherently poorly conditioned matrix. These

facts indicate that the tangential component is more suitable for numerical analysis. For the tangential

component, there is a constraint required by the Fredholm alternative that restricts the form of the terms

that do not contain n� v. This constraint is satis�ed implicitly, however, if Stokes' theorem is satis�ed,Z
R

!dR =

Z
S

n� vdS:

This implies that numerical methods that include integral operators will be better suited for accurate

solutions. It can also be shown that, for a Galerkin formulation [76], the normal component of Eq. 92 yields

a rank de�cient matrix. Thus, the tangential component of the governing equation should be used to solve

for n� v .

The boundary condition, Eq. 92, requires special consideration in the solution of the Laplace equation,

Eq. 90. The spatial variations of the boundary condition are generally not simple, owing to the motion

induced by the vorticity and velocity divergence �elds. Also, this boundary condition changes every time-

step since the vorticity and divergence �elds change every time step. As a result, traditional methods can

result in large errors, as will be shown. We will consider the performance of two methods to solve Eq. 92:

point collocation and Galerkin's method.

To examine the di�erent methods to solve Eq. 92, consider that an equation must be written for each of

the unknown tangential velocities n� v . A weighted residual approach is discussed in which the governing

equation f(x) is multiplied by a weighting function w(x) , and integrated over the boundaryZ
S

w(x)f(x) = 0: (93)

If the weighting function is a delta function w(x) = �(x � xc) , a point collocation method is obtained

with collocation points at locations xc. With point collocation, information is known only at discrete points.

If w(x) = 1 on an element and 0 elsewhere, a Petrov-Galerkin method is obtained. Petrov-Galerkin methods

yield a solution that satis�es the governing equation in an integral sense, but not pointwise. An intermediate

approach is a Galerkin method, in which the weighting functions are the basis functions used to represent the

variables. Since the basis functions are functions of space, some point-wise information is included in addition

to some integral information, which has been found to provide useful solutions for elliptic equations, as will

be shown in two example problems. First, however, the discretization of the boundary element equation is

described.

Discretization of the Boundary Element Equation

First, the entire domain boundary C is considered to be comprised of Ne boundary segments. An integral

over the boundary is then the sum of integrals over each boundary segment, eiZ
C

[�] =
NeX
i=1

Z
ei

[�]: (94)
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To simplify the notation somewhat, we denote  = �n � r� , and � = �n � r� (vortex and source

sheet strengths),

�(x)[n(x) � (x)� n(x)�(x)] =

Z
S

[(x0)� g(x;x0)]dS(x0) +

Z
S

[�(x0) � r�]g(x;x0)dS(x0) (95)

The vortex and source sheets on each boundary segment ei are represented in terms of basis functions

�ei;nj . For a particular choice of basis functions, there are NB nodes on a boundary segment, and each node

is denoted by nj . For example, a linear element with arc length �s is described by NB = 2 nodes, and the

basis functions,

�ei;1 = 1� s

�s
(96)

�ei;2 =
s

�s
(97)

on 0 < s < �s, and 0 elsewhere, where s is the arc length along the element. The basis functions sum to

unity on an element,
NBX
j=1

�ei;nj = 1 (98)

The vortex and source sheets on element ei are represented as,

ei =

NBX
j=1

ei;nj�ei;nj ; �ei =

NBX
j=1

�ei;nj�ei;nj (99)

Substituting the representations in Eq. 99 into the integrals over each boundary element (Eq. 94) yields

the discretized boundary element equation (evaluated on the boundary),

�(x)[n(x) � (x)� n(x)�(x)] =

NeX
i=1

Z
ei

NBX
j=1

ei;nj�ei;nj (x
0)� g(x;x0)dS(x0)

+

NeX
i=1

Z
ei

NBX
j=1

�ei;nj�ei;nj (x
0)� g(x;x0)dS(x0) (100)

As discussed above, we solve the tangential component of this equation. The integrals can be represented

numerically using quadrature rules, taking care to account for singular behavior associated with the Greens'

functions. Or, as we have done, the integrations can be performed analytically for straight line segments

and linear basis functions. In either case, the kernels of the integral are evaluated to obtain numerical values

that become nodal coe�cients �ei;nj and �ei;nj , so that the tangential component of the governing equation

becomes,
NeX
i=1

NBX
j=1

�ei;nj (x)ei;nj =

NeX
i=1

NBX
j=1

�ei;nj (x)�ei;nj (101)

In general, this is a set of linear equations for the unknown tangential velocity boundary condition

(vortex sheet strength) ei;nj , given that the normal velocity boundary conditions (nodal source values)
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�ei;nj are speci�ed everywhere (� = �n � r�). For a point collocation solution method, this equation is

evaluated at arbitratry points xc on the boundary elements,

NeX
i=1

NBX
j=1

�ei;nj (xc)ei;nj =

NeX
i=1

NBX
j=1

�ei;nj (xc)�ei;nj (102)

Point collocation is often used but will be shown to be undesirable. More desirable solutions can be

obtained by a Galerkin formulation in which the above equation is �rst multiplied by each basis function

and then integrated over each boundary segment.

Z
ei

�ei;nj (x)

NeX
i=1

NBX
j=1

�ei;nj (x)ei;njds =

Z
ei

�ei;nj (x)

NeX
i=1

NBX
j=1

�ei;nj (x)�ei ;njds (103)

We evaluate these integrals using Gaussian quadrature, with evaluation points xk , and weights wk to obtain,

X
k

wk�ei;nj (xk)

NeX
i=1

NBX
j=1

�ei;nj (xk)ei;nj =
X
k

wk�ei;nj (xk)

NeX
i=1

NBX
j=1

�ei;nj (xk)�ei;nj (104)

Evaluating the summations numerically for an i; j pair yields a linear equation with new nodal coe�cients

denoted with primes and the evaluation location denoted as xij ,

NeX
i=1

NBX
j=1

�0ei;nj (xij)ei;nj =

NeX
i=1

NBX
j=1

�0ei;nj (xij)�ei;nj (105)

To compare the Galerkin method to the point collocation method, we consider two ows in a two-

dimensional square domain shown in Figure 21. The simpler ow has zero vorticity and simple boundary

conditions (a constant velocity in one side, and a constant velocity out the opposite side, with zero normal

velocity on the remaining sides). (The analytical solution is a uniform ow: the tangential velocity on the

inlet and outlet boundaries is zero, and the tangential velocity on the sidewalls is the same as the inlet and

outlet velocity.) For this simple problem, highly accurate solutions are obtained using both point collocation

and Galerkin method; i.e., both solutions are within machine precision of the analytical solution. This

exceptional behavior is obtained for both constant and linear boundary elements, and occurs because the

simple boundary conditions are well-resolved in each case. For the more di�cult problem discussed next,

the boundary conditions have signi�cant spatial variation, and are not as well-resolved by each method. As

a result, the solutions will be seen to be very di�erent.

The solutions for the more di�cult problem with unit vorticity in the domain and zero normal velocity

on all boundaries are shown in Figure 22. Linear boundary elements were used for both solution methods,

and the nodal values for discretizations of 10, 20, 100, and 200 boundary elements on each side of the square

domain. For the point collocation solutions, the evaluation points were at the mid-point of each element.

The solutions show that the point collocation solution oscillates for each of the discretizations, although

the magnitude of the oscillations decreases as the number of elements increases. The oscillations are visible,
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however, even with 200 boundary elements on one side of the square. The Galerkin solution does not show

such oscillations for any of the discretizations.

The relative errors (using the Galerkin solution with 200 elements per side as the \exact" solution) show

that the Galerkin solution with 10 points per side is more accurate everywhere than the point collocation

solution with 100 points per side. These observations indicate that the Galerkin solution is signi�cantly

more accurate than the point collocation solution.

The principal basis for the superior performance of the Galerkin algorithm is that it contains integral

information that is essential to the existence of the solution. Recall that the Fredholm alternative requires an

integral constraint to be satis�ed. The analytical form of the governing equation satis�es this constraint, but

the discrete forms in the numerical methods do not necessarily satisfy it. Point collocation methods do not

contain integral-type information, whereas the Galerkin formulation does. Based on these considerations,

the Galerkin approach provides a less oscillatory, more accurate solution, and was used in the present work.

Thus, with v! , vD , and vp = r� evaluated as above, the computation of the velocity vector v =

v! + vD + vp is completed.

Redistribution of Vortex Elements

It is well established that the long time accuracy of vortex method solutions to the momentum equations

su�ers due to the increasing irregularity of the Lagrangian mesh composed of element locations [77,78].

Inherent in the construction of the method, elements move according to the local velocity �eld, and may

therefore become concentrated in certain regions and depleted elsewhere. As elements move apart, the loss

of overlap between nearest elements' cores leads to loss of accuracy. A useful remedy is a periodic remeshing

or redistribution [79] of the vortex elements onto a regular mesh using an appropriate interpolation kernel.

This is also useful in terms of reducing the number of elements in the domain, which in the present ow

increases substantially due to the creation of new elements by baroclinic and viscous circulation source terms.

On the other hand, redistribution can introduce perturbations to the original vorticity �eld, depending on

the smoothness of the interpolation kernel. In particular, the present scheme requires the evaluation of

the viscous term in the vorticity transport equation from the velocity �eld available at mesh points. This

involves third derivatives of the velocity �eld, and is therefore sensitive to minor noise in the velocity. As a

consequence, we �nd that the discontinous �2 kernel [79,80] is inadequate in the present context, because of

resulting spurious noise in the viscous source terms. Rather, the smoother W4 kernel [81] was necessary to

maintain smoothness of the source terms after redistribution.
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Figure 21. A sketch of the two test ow cases used to demonstrate the accuracy of di�erent boundary
element discretization schemes. (a) The unit square containing unit vorticity, with zero normal
velocity boundary condition. The x and y velocities induced by the vorticity �eld are shown.
(b) The unit square with zero vorticity and uniform inlet velocity on one side, the same uniform
velocity on the opposite side, and zero normal velocity on the remaining sides.
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Figure 22. Comparison of Galerkin and point collocation methods to calculate the tangential velocity
(vortex sheet strengths) on one side of the unit square containing unit vorticity and zero normal
velocity boundary conditions. Solutions are shown for 10, 20, 100, and 200 elements per side.
The Galerkin solutions (a) do not show the large oscillations seen in the point collocation
solutions (b). Relative errors shown in (c) are based on the Galerkin solution for 200 elements
per side.
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5.2.4 Fast Multipole Method

In Section 5.2.3 we introduced the Helmholtz decomposition of the velocity �eld into rotational, dilatational,

and potential components, the discretization of those components into vortical, dilatational, and boundary

elements, and the integral equation for the construction of the velocity �eld from these elements.

The present section deals solely with the e�cient evaluation of those integral quantities through the

use of the Fast Multipole Method. To evaluate the velocity at M locations due to N particles, this method

requires order (N+M) log(N+M) operations, which for large numbers of particles and evaluations, provides

signi�cant savings over the direct, order N �M method.

We begin with a summary of the Fast Multipole Method (FMM), as originally developed in [82,83].

Suppose we have some set of particles in the computational domain. This domain is the union of some

number of non-overlapping square regions, which will become the \coarse cells" or \root elements" in a

quad-tree. In our computations, we only use rectangular domains, which are covered with nx � ny coarse

cells. The set of particles is distributed onto these cells, and the cells are recursively re�ned into a quad-tree,

until no leaf cell (square box) in the tree contains more than k particles, where k is a speci�able parameter

that a�ects only the e�ciency of the computation. Figure 23 shows an example with two coarse cells and

33 particles, with the value of k taken to be three. Note that the small choice of k was made here for the

purpose of illustration; for e�cient computation, k would be considerably larger.

Typically the FMM is used with a single set of particles that interact with each other, whether it be

electrostatically, gravitationally, or vortically. In these cases the set of velocity evaluation points is the

same as the set of particle locations. Our case is somewhat more complicated as we have two sets of

particles, vortical and dilatational, of which only the former are advected with the ow and therefore require

a velocity computation. The velocity must, however, also be provided at other, independent sets of points

which include all of the edge centers of the adaptive mesh from the Eulerian code and all of the end points

from the boundary element method. Accordingly, our FMM tree is actually composed of three (or more)

separate branches, one for the vortices, one for the dilatational elements, and one or more for the separate

evaluation points. These trees share the same hierarchy, but a cell may be a leaf in one \tree" but not

another, or, likewise, present in one tree while not in another. While making the bookkeeping somewhat

more tedious, this does not essentially alter the algorithm, and will only sparingly be referred to below, with

the generalization being largely obvious.

The goal in the FMM is to construct, in each leaf cell, Taylor expansions that account for the far

�eld terms, i.e. for the velocity �eld due to all su�ciently distant vortices and dilatational elements (one

expansion for each set). Velocities are then found within leaf cells by evaluating these two expansions and

then superposing the �eld due to all particles in nearby cells that were not included in the construction of

the far �eld expansions.

The construction takes place in two passes. First, multipole expansions are formed in every cell which
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converge to the �eld generated by the particles within the cell at points distant from the cell. These expan-

sions we will call \Mexps," as an abbreviation of \multipole expansions." They are built recursively from

�nest cell to coarsest cell. In leaf cells, Mexps are computed directly from their dependence on the individual

particle strengths and locations. Elsewhere, in cells with children, they are given as the superposition of the

four children's Mexps, after translation of the Mexps from child cell centered to parent cell centered.

The second pass forms local expansions in every cell which converge within the cell to the �eld generated

by all particles in all cells considered to be su�ciently distant. These expansions we will call \Lexps" as an

abbreviation of \local expansions." Here the recursion leads from coarsest cell to �nest cell. Beginning in

each coarse cell, local expansions are constructed which account for all of the particles within all other coarse

cells that are su�ciently distant. This is done through operations that translate distant Mexps into Lexps

and through the superposition of the resultant Lexps. The recursion then proceeds with the translation of

Lexps from parents to their children. The children's Lexps are then enhanced with translations taken from

the children of cells not included at previous levels of resolution (a cell may be su�ciently distant to include

in our Lexp computation even though its parent was adjacent to our parent). The recursion continues until

each leaf cell is left with a pair of Lexps (vortical and dilatational) and a short list of nearby cells whose

contributions are not represented in the Lexps.

There are four basic objects in the method: lists of particles (which we call \Plists"), lists of cells

(Clists), multipole expansions (Mexps), and local expansions (Lexps). Then there is a core set of routines

which translate Plists to Mexps, Plists to Lexps, Mexps to Mexps (with di�erent centers), Lexps to Lexps,

and Mexps to Lexps. Added to these is another set which compute velocity �elds from Plists, Lexps and

Mexps (of each type). These operations are well documented elsewhere [82], and we will simply take their

existence as granted for the purposes of this report.

We will, however, explicitly write out the algorithm that we use for the FMM below. We do not use the

traditional algorithm which uses various \interaction lists" (Clists) which explicitly give the cells for which

Mexps are to be translated to Lexps, and so forth. Such lists can be formed explicitly from a complex set

of rules [83]. Instead, we write the algorithm purely recursively, which o�ers advantages in terms of clarity

and simplicity and is, most signi�cantly, more natural to parallelize.

1. Construct a Mexp in each cell to represent all of the particles it contains:

(a) If the cell is childless, convert its Plist directly into a Mexp.

(b) If the cell has children, translate the Mexps of its four children to our center and sum them.

2. Construct a Lexp in each cell to represent all particles at su�cient distance, while keeping track of those

that are too close:

(a) In every cell, initialize a Clist, called its residual, to be empty. These lists of cells will be �lled in

so as to contain all cells that are not represented in the local far �eld computation (i.e. not covered

by the Lexp). Thus, these residual lists will eventually be used to establish the necessary near �eld
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computations.

(b) For each coarse cell, take the Mexps of all other, non-adjacent coarse cells and translate and combine

them into a Lexp about our center.

(c) For each coarse cell, build a residual list composed of all coarse cells whose Mexps weren't grabbed

in 2b, i.e. all coarse cells adjacent to us plus ourself.

(d) Then do the following recursion, from each coarse cell:

i. If we have children, translate our Lexp to each of our children, and then for each cell in our

residual list and for each of our children:

� If the residual cell has children, then for each cell of its children and for each of our

children:

- If the two are adjacent, add the residual cell's child to our child's residual list.

- Otherwise, translate and superpose its Mexp onto our child's Lexp.

� If, otherwise, the residual cell is childless, then for it and each of our children:

- If the two are adjacent, include the residual cell in our child's residual list.

- Otherwise, compute and superpose a Lexp for our child directly from its Plist.

� Then continue the recursion of 2d to our children.

ii. If we are childless, initialize two new empty Clists, called our P-Eval and M-Eval Clists. We

will split the near �eld cells, taken from the residual, between these two lists. Interactions from

the former list of cells will be computed directly from Plists, in 3c, while those from the latter

will be evaluated through Mexps, in 3b. The lists are formed by the following recursion over

our residual, which separates it into two pieces: non-adjacent cells (of maximal coarseness) and

adjacent leaf cells:

� If the residual cell has no children, add it to our P-Eval list.

� If the residual cell has children:

- If it is adjacent to us, continue the recursion of 2(d)ii to its children.

- Otherwise, add it to our M-Eval list.

3. Finally, to evaluate the velocities at a set of points in a childless cell:

(a) Evaluate the velocity due to our Lexp at each point.

(b) For each cell in our M-Eval Clist, evaluate and superpose the velocity due to its Mexp at each of

our evaluation points.

(c) For each cell in our P-Eval Clist, evaluate and superpose the velocity due to each particle it contains

at each of our evaluation points.

The operation of this algorithm, particularly part 2, can be more easily understood through the study

of an example illustration, such as that given in Figures 24-26. These �gures show a sample FMM hierarchy

under the various stages of a single recursion from a coarse cell in step 2 of the algorithm. In the �rst of the
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sequence, the twelve coarse FMM cells are depicted with solid borders, and the remaining hierarchy with

dashed borders. We consider steps 2b and 2c for the coarse cell that is shown as cross-hashed. These steps

divide the coarse cells into two sets, the �rst of which have their multipole expansions translated into a local

expansion and are denoted in the �gure with shading. The other six coarse cells become the \residual" and

are marked in the �gure with R's. The next level of the recursion continues work on this residual area.

The second �gure again shows all relevent cells, now for step 2d.i, with solid borders, with a cross-hashed

child of the original cross-hashed coarse cell. Once again, the shaded cells have their Mexps translated to

a Lexp and the other cells marked \R" become the residual for this second level cell. The recursion then

continues in the third �gure, to another cross-hashed generation, where again Mexps are included from

the lightly shaded cells, and the white cells marked \R" become the new residual. At this stage the local

expansion is also computed directly from the particle list in the darkly shaded (large) leaf cell in the old

residual, as per the section in 2d.i applying to childless, non-adjacent residual cells. Note that it is particularly

advantageous to make such inclusions when the local expansion target cell contains further generations of

cells (as opposed to this case in which the target is a leaf cell).

Having reached a leaf cell in the Lexp construction recursion, we proceed to burst the residual as per

step 2d.ii, the results of which are illustrated in the Fig. 27. Here the residual is split into two pieces, the

M-Eval list and the P-Eval list, represented by the darkly shaded and lightly shaded cells, respectively. The

single M-Eval cell here contains four children, and the evaluations in the cross-hashed cells will use the Mexp

from the parent, this being more e�cient than direct evaluation from the underlying particle lists. For the

remaining, childless residual cells, the evaluations are done directly from the particle lists.
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Figure 23. Sample FMM tree construction. Shown are hypothetical particle/vortex element locations and
the adaptive FMM cell tree structure constructed by the algorithm.
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RRR

Figure 24. Example FMM computation pattern: coarse cell, Mexp-to-Lexp and residual candidates for a
target (cross-hashed) coarse cell.
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Figure 25. Example FMM computation pattern, part 2: second level, Mexp-to-Lexp and residual candidate
cells for a child of original target.
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Figure 26. Example FMM computation pattern, part 3: third level, Mexp-to-Lexp, Plist-to-Lexp, and
residual candidate cells for a grandchild of original target.
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Figure 27. Example FMM computation pattern, part 4: remaining, direct interaction cells for same grand-
child of original target.
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5.2.5 Fast Multipole Method for Potential Flow

As was seen in Section 5.2.3, the potential ow is represented by a pair of piece-wise linear functions along

the boundary, and these are equivalent to vortical and dilatational strength density functions. This repre-

sentation is especially appealing in the current implementation because it allows the natural computation of

the potential ow within the fast multipole algorithm. Since this is a new extension to the FMM, we cover

it in full detail below.

The boundary elements are constructed in a binary tree, beginning with one element on each side and

recursively bisecting and subdiving them until local resolution criteria are met. Each leaf element, or panel,

is then assigned two linearly varying strengths which can be equated with vortical and dilatational densities.

To evaluate the velocity �eld induced by these strengths within the domain, we use the methodology of the

FMM. First, for each leaf panel, multipole expansions are formed (about the midpoint) to represent the

potential �elds due to the two strength distributions. Next, these Mexps are recursively translated from

child panels to their parent's midpoints and superposed pairwise. Finally, the resultant Mexp tree is used

in the construction of the Lexps within the FMM hierarchy in the same style as the Mexps interior to the

domain.

For the construction of the Mexps within the leaf panels, we use the analytical solution for a prototypical

problem. Suppose that a rod with linearly varying charge is centered at the origin of the complex plane.

Let ze be one end of the rod (hence �ze is the other) and parameterize the rod with a variable � which

varies from �1 at �ze to 1 at ze. Write the charge on the rod as Q(�) = qa�+ qb, see Figure 28. Then the

potential �eld for all z with jzj > jzej can be written as the multipole expansion (centered about the origin):

'(z) = a0 log(z) +

1X
i=1

aiz
�i

with the coe�cients given by:

a0 =

Z 1

�1

(qa�+ qb)d�

ak = �ze
k

k
jzej

Z 1

�1

(qa�+ qb)d�; k > 0:

Carrying out the integration, and writing the length of the rod as s = 2jzej,

a0 = s qb

ak =
�zek

k(k + 1)
s qb; k even; positive

ak =
�zek

k(k + 2)
s qa; k odd:

We then extend the FMM algorithm to incorporate these expansions as follows:

1. Construct a Mexp in each panel to represent its strength distribution.
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(a) If the panel is childless (i.e. a leaf), convert its strength distribution directly into a Mexp, using

the above formulas.

(b) If the panel has children, translate the Mexps of its two children to our center and sum them.

2. Construct a Lexp in each FMM cell to represent all panels of su�cient distance, while keeping track of

those that are too close:

(a) In every cell, initialize a list of panels, again called a residual, to be empty. These lists will be �lled

in so as to contain all panels that are not represented in the local far �eld computation (i.e. not

covered by the Lexp).

(b) For each coarse cell, take the Mexps of all coarse panels which satisfy d > (
p
2� 1=2)s+ (

p
2=2)w,

where d is the distance from cell center to panel center, s is the panel length, and w is the cell

width, and translate and combine these Mexps into a Lexp about the coarse cell center.

(c) For each coarse cell, build a residual list composed of all coarse panels whose Mexps weren't grabbed

in 2b.

(d) Then do the following recursion, from each coarse cell:

i. If we have children, translate our Lexp to each of our children, and then for each panel in our

residual list and for each of our children:

� If the residual panel has children, then for each of its child-panels and for each of our

children:

- If the child and panel satisfy the relationship in 2b, translate and superpose the panel

Mexp onto child cell's Lexp.

- Otherwise, add the panel to the child cell's residual list.

� If, otherwise, the residual panel is childless, then add it to each child cell residual list.

� Then continue the recursion of 2d to the child cells.

ii. If we are childless, initialize two new empty panel lists, called, as before, our P-Eval and M-Eval

panel lists. The lists are formed by the following recursion over our residual:

� If the residual panel has no children, add it to our P-Eval list.

� If the residual panel has children:

- If our leaf cell and panel satisfy the relationship in 2b, add it to our M-Eval list.

- Otherwise, continue the recursion of 2(d)ii to its children.

3. Finally, to evaluate the potential ow velocities at a set of points in a childless cell, we add the following

to the forgoing evaluation algorithm.

(a) Superpose the panel based Lexp onto the traditional FMM Lexp. (This need only be done in leaf

cells.)

(b) For each panel in our M-Eval panel list, evaluate and superpose the velocity due to its Mexp at

each of our evaluation points.
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(c) For each panel in our P-Eval panel list, evaluate and superpose the velocity due to its strength

distribution by direct analytical evaluation at each of our evaluation points.

Note that the construction of Mexps for non-leaf panels is done with the same translation and super-

position mechanism that is used for the FMM cells. Also, the integration of these Mexps into the FMM

Lexps is accomplished with an algorithm that closely parallels the original. The new distance check replaces

the original adjacency check and is su�cient to maintain the overall error tolerance of 2�p, where p is the

number of terms carried in the expansions.

One note as to implementation: the velocity due to just the particles within the domain, with no imposed

potential ow, must �rst be evaluated along the boundary elements, before their strengths can be assigned

(so as to impose a total normal velocity boundary condition). Thus, we proceed as follows. First, the FMM

is applied to construct expansions everywhere within the interior domain hierarchy, with no reference to the

boundary elements. The velocity �eld is then evaluated at the necessary points for the boundary element

method, and the boundary element strengths are then computed. The Lexps representing solely the potential

�eld are then separately constructed within the FMM hierarchy, and in the leaf FMM cells, superposed onto

the existing Lexp which represents the potential-free velocity �eld. Lastly, the full velocity �eld is found at

necessary interior points (vortex centers and AMR cell edges) through the evaluation of the leaf cell Lexps

and the inclusion of near �eld e�ects from the panel and cell M/P-Eval lists.
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Figure 28. Geometry and parameterization of a charged rod in the complex plane.
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5.2.6 Coupled Lagrangian-Eulerian Time Integration

A coupled integration approach is constructed based on a second-order Runge-Kutta/predictor-corrector

formulation for both the Eulerian and Lagrangian integrations. The integration procedure is as follows.

0. Assume starting at time level tn, with all ow quantities known on all mesh levels. There are Nv vortex

elements !i = (�i;�i), i = 1; 2; : : : ; Nv, at lagrangian locations �i and with circulation strengths �i.

There are NP boundary elements Pj = (�j), j = 1; 2; : : : ; NP , at locations �j , and with appropriate

strengths. There are also Ne expansion sources Sk = (sk; �k), k = 1; 2; : : : ; Ne, at locations sk and with

strengths �k, based on Dij = (r � v)ij at tn. We also have known velocity �eld values computed from

this distribution of vortices, boundary elements, and sources, at all vortex element locations (vni ) and at

all grid locations (vnij), for all mesh levels. The baroclinic B
n
ij and di�usional Vnij circulation source/sink

terms are also known at all cell centers. We also have scalar values for all scalars at cell centers on all

meshes, cnij , where c = fckg = (T; �; Y1; Y2; : : : ; YNs
).

1. Propagate the vorticity �eld, predictor, from tn to tn+1 = tn +�tL.

~�n+1i = �ni + vni �tL (i = 1; 2; : : : ; Nv)

where �tL is the Lagrangian time step. This involves adding elements at the domain inlet, and elsewhere

in the domain if necessary, due to di�usion and baroclinicity. The circulation change in each mesh cell

is given by,

��ij = �tL(B
n
ij + Vnij)

This circulation, when above threshold, is used to create new elements at leaf-cell centers. Vortex

elements added in this (predictor) step will be used to compute velocity �elds and then discarded. The

corrected ~Bn+1
ij and ~Dn+1

ij , along with the boundary conditions, are then used to add new permanent

elements, modify circulation of existing elements, or remove elements that leave the domain, in the

corrector step below.

2. Propagate scalar �elds, predictor, on all grids, holding the grid velocity �eld constant at vnij . In general,

�tL = m�toE , where �t
o
E is the Eulerian time step on mesh 0, and m is a positive integer. Thus, for

any scalar c(x; t), perform the time integration on all grids, following the recursive AMR integration

procedure, from tn to tn +�tL. Generally, for �tL = K�tlE (�tlE is the Eulerian time step on mesh

level l), for k = 1; 2; : : : ;K:

~cn+k=K = ~cn+
k�1
K +�tlEgc(v

n; ~cn+
k�1
K )

where, @c=@t = gc(v; c) is the right-hand-side of the conservation equation for scalar c, and ~cn = cn.

3. Find ~vn+1i , the new predicted velocity at the predicted new vortex element locations. Evaluate the

velocity ~vn+1i at the center of each vortex element !i, with ~vn+1i = ~vn+1(~�n+1i ) = ~vn+1!;i + ~vn+1p;i + ~vn+1D;i .
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Here, v! = v!(!), where ! = f!ig is the set of all vortex elements, vp = vp(P ), where P = fPjg is
the set of all boundary elements, and vD = vD(S), where S = fSkg is the set of all expansion sources.

This involves the following internal steps:

3.a Using !, �nd v!, in an unbounded in�nite simply connected domain.

3.b Using the predicted scalar �eld on the adaptive mesh, evaluate (r�v)ij from Eq. 44 in each childless

cell. Create expansion sources Sk in cells with (r � v)ij above a certain threshold, and compute

vD , in an unbounded in�nite simply connected domain.

3.c Using the computed v! and vD , enforce velocity boundary conditions to �nd boundary element

�eld P strengths, and evaluate vp.

3.d Combine a,b, and c, to get ~vn+1i = ~vn+1!;i + ~vn+1p;i + ~vn+1D;i , i = 1; 2; : : : ; Nv.

4. Evaluate the predicted velocity �eld ~vn+1ij on all grids at predicted time ~tn+1, again using the contribu-

tions due to the vortical, potential, and dilatational components.

5. Evaluate the strength of baroclinic and di�usion circulation source terms for each cell at the new

predicted time level, ~Bn+1
ij and ~Vn+1ij . This uses Eq. 84 above, where the term @v=@t in Dv=Dt is

evaluated using the �elds : vnij and ~vn+1ij on the grid. Note that the predicted �eld is O(�tL); hence a

�rst-order discretization for @v=@t is adequate here. Namely,

g@v
@t

���n+1
ij

=
(~vn+1ij � vnij)

�tL

6. Propagate the vorticity �eld, corrector, from tn to tn+1 = tn +�tL,

�n+1i = �ni +
�tL
2

(vni + ~vn+1i ) (i = 1; 2; : : : ; Nv)

Also, add/remove elements (permanently) at domain inow/outow boundaries, and add necessary

cicrculation in each mesh cell, or modify existing element strengths, due to baroclinic and di�usional

sources.

��ij =
�tL
2

(Bn
ij + Vnij + ~Bn+1

ij + ~Vn+1ij )

The procedure for distributing �� among existing elements and/or creation of new elements is described

in Appendix D.

7. Propagate scalar �elds, sequence of predictor-correctors, using time-interpolated velocity �eld values

on the grid, based on linear time-interpolation between vnij and ~vn+1ij . Thus, as above in Step 2, for

k = 1; 2; : : : ;K:

~cn+k=K = cn+
k�1
K +�tlEgc(v̂

n+ k�1
K ; cn+

k�1
K )

cn+k=K = cn+
k�1
K +

1

2
�tlE

h
gc(v̂

n+ k�1
K ; cn+

k�1
K ) + gc(v̂

n+k=K ; ~cn+k=K)
i
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where,

v̂n+k=K =
k

K
(~vn+1 � vn) + vn

8. Repeat Step 3, evaluate new corrected velocities at vortex element centers, vn+1i .

9. Repeat Step 4, evaluate new corrected velocities at grid cell walls, all meshes, vn+1ij .

10. Evaluate the strength of baroclinic and di�usion circulation source terms for each cell at the new

corrected time level Bn+1
ij and Vn+1ij . Again, as in Step 5 above, this uses Eq. 84. However, here a

second-order discretization of @v=@t is necessary. Yet, we will only use two time levels, vn and vn+1.

The need for vn+1 is the main reason for doing Steps 8 and 9 at the end of a time step rather than at

the beginning. A two-time-level second-order @v=@t discretization is given by:

@v

@t

���n+1 = 2

�tL
(vn+1 � vn)� @v

@t

���n

11. This is the end of the Lagrangian time step. An optional redistribution of the vortex element �eld is im-

plemented here as indicated above, following the W4 scheme in [81]. This is done relatively infrequently

(e.g. every 50-100 time steps) to regularize the distribution of vortex elements, as well as reduce their

number.
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5.3 Computational Issues

We discuss here the outline of the parallel implementation of the Eulerian and Lagrangian schemes, including

data structure, communication issues, dynamic load balancing, and coupling issues between the two tree

codes.

5.3.1 Parallel Implementation of the Eulerian Scheme

The �nite di�erence method used in the Eulerian code is well suited to parallelization on massively parallel

computers. The 13-point computational stencil is fairly compact. Thus, only nearest-neighbor communica-

tion is needed (see Figure 29). Additional storage is needed for only two rows of \ghost" cells (cells whose

values must be obtained from a neighboring processor) along each edge of a processor's subdomain. Thus,

the size of the problems solved can be scaled easily with the number of processors.

However, the parallel implementation becomes more complicated with the addition of adaptive mesh

re�nement to the Eulerian method. The adaptive mesh re�nement requires data structures to change dynam-

ically as the computation proceeds. Care must be taken to keep the overhead of maintaining and updating

these structures low in parallel.

With adaptive mesh re�nement, processors containing highly re�ned areas of the domain will have

much more computation to perform than areas without re�nement. Moreover, the amount of re�nement

per processor can change dramatically throughout the course of a transient simulation. Dynamic load

balancing is needed, then, to correct load imbalances caused by the adaptive mesh re�nement. Dynamic

load-balancing algorithms can di�er signi�cantly from the static partitioning algorithms in, say [84]. These

static partitioning algorithms have been used successfully as preprocessors to actual computation [85,86].

These algorithms produce high-quality partitions that equally distribute work while keeping communication

overhead between subdomains low. They are typically implemented in serial, however, and may use large

amounts of time or memory for very large problems, but since they are used as preprocessors, their expense

can be amortized over many simulations using the same mesh and decomposition. Dynamic load-balancing

algorithms, on the other hand, must run side-by-side with an application. Thus, they must be implemented

in parallel and use little time and memory to maintain the scalability of the application. In determining new

partitions, they should also take into account the current locations of data to reduce the cost of migrating

data to new processors.

Data Structures

Elements are managed by data structures that maintain element connectivity and data position information.

To support the creation and removal of elements for adaptive re�nement and coarsening, these data structures

are allocated dynamically. Pointers are used to link elements and meshes together. Thus, when data is

migrated to a di�erent processor to improve load balance, insertion and deletion of elements in the data
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structures can be done in a straightforward manner. Each element contains pointers to its application data

(solution variables, coordinates, etc.) and to its twelve neighboring elements in the �nite di�erence stencil.

For each processor, local elements are elements assigned to it. The processor computes the solution

values for these elements. Local elements are stored in a height-balanced binary tree (an AVL tree [87]) to

allow e�cient insertion and deletion during re�nement and load-balancing. During the computation, local

elements are accessed via in-order traversal of this tree. Space for local element application data is allocated

at the beginning of the computation and as needed for imported elements and re�ned elements.

Since the ghost elements can change when elements are re�ned or migrated, they are also allocated

dynamically and stored in an AVL tree for easy insertion and deletion. Ghost-element data are stored

contiguously, so a processor can receive the data in a single message from each neighbor and read the

messages directly into the ghost element data space (i.e., without bu�ering the data and then moving it into

the ghost element data space).

Data gather operations are needed to send (processor-) boundary local element data to neighboring

processors. Thus, boundary local elements are maintained in binary trees, one for each neighboring processor,

facilitating proper ordering of the boundary element data during gather operations.

These mesh data structures are duplicated for each mesh level. Each level has trees of local elements,

ghost elements, and boundary elements. By using these data structures consistently, routines for communica-

tion, �nite-di�erence computation, and load-balancing can be applied to any level. This feature is especially

important since our local time-stepping scheme applies the �nite di�erence method to each level individually.

Connectivity is added between mesh levels. For each element, pointers to its parent and/or child

elements are stored to implement the quadtree discussed in Section 5.2.1. The pointers are used to simplify

interpolations between meshes, enforce the re�nement constraints and reset neighbor pointers after mesh

re�nement.

Dynamic Load Balancing

We have used the dynamic load-balancing code of Devine and Flaherty [71]. The algorithm is based on the

load-balancing techniques of Wheat [88] and Leiss and Reddy [89]. Global balance is achieved by performing

local balancing within overlapping processor neighborhoods, where a processor neighborhood is de�ned as

a processor (the neighborhood center) and all other processors for which the center has ghost cells (see

Figure 30). Every processor is the center of one neighborhood, and may belong to many neighborhoods.

Within each neighborhood, a processor's work load is balanced with respect to its neighboring processors'

loads using local performance measurements. Work can be migrated from a processor to any other processor

within the same neighborhood.

There are three classes of processors for element migration: exporting, importing, and concerned pro-

cessors. During a migration phase, a processor may belong to zero, one, two, or all three of the processor

classes. The exporting class contains all processors that send elements to other processors. The importing

90



class consists of all processors that receive elements from other processors. Concerned processors are all

processors having a cell within the �nite-di�erence stencil of a cell that is being migrated from an exporting

processor to an importing processor. Concerned processors must be noti�ed of the migration so they can

update pointers and ghost cell information for the migrating elements.

Each load-balancing phase consists of the following operations:

1. Compute work loads. Each processor determines its work load as the time to process its local

data since the previous balancing phase less the time to exchange inter-processor boundary data

during the computation phase. Neighborhood average work loads are also calculated.

2. Issue work requests. Each processor compares its work load to the work load of the other

processors in its neighborhood and determines which processors have greater work loads than its

own. If any are found, it selects the one with the greatest work load (ties are broken arbitrarily)

and sends a request for work to that processor. Each processor may send only one work request,

but a single processor may receive several work requests.

3. Select elements to satisfy work requests. Each processor prioritizes the work requests it

receives based on the request size, and determines which elements to export to the requesting

processor. Details of the selection algorithm are given below.

4. Notify and transfer elements. Once elements to be exported have been selected, the importing

and concerned processors are noti�ed. Concerned processors update pointers in elements neighbor-

ing the migrating elements. Importing processors allocate space for the incoming elements, and the

elements are transferred.

Element migration causes processor subdomains to have irregular shapes, leading to more complicated

communication patterns. The load-balancing algorithm, however, attempts to maintain reasonably shaped

subdomains to control communication costs by using a priority scheme to select elements for export. Elements

are assigned priorities (initially zero) based upon the locality of their element neighbors. For each neighbor

(including parents and children), an element's priority is changed by the following amounts:

� +3 if the neighbor is on the same mesh level and in the importing processor;

� -3 if the neighbor is on the same mesh level and in the element's own processor;

� +1 if the neighbor is on a di�erent mesh level and in the importing processor; and

� -1 if the neighbor is on a di�erent mesh level and in the element's own processor.

Thus, elements whose neighbors are already in the importing processor are more likely to be exported

to that processor than elements whose neighbors are in the exporting processor or some other processor.

Likewise, the priorities are weighted by the amount of communication between the neighbors; communication

within a mesh level occurs more frequently than communication across mesh levels. When an element has

no neighboring elements in its local processor, it is advantageous to export it to any processor having its

neighbors. Thus, \orphaned" elements are given the highest export priority. When two or more elements
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have the same priority, the processor arbitrarily selects one of the elements. This priority scheme for selecting

elements for export results in a peeling of elements on the processor boundary, preventing the creation of

narrow, deep holes in the processor subdomains.

The local time-stepping scheme described in Section 5.2.1 and the synchronous nature of the explicit

Runge-Kutta method (Eqs. 56-58) require that each level of the adaptive mesh be load-balanced individually

to prevent processors without re�nement from being idle while processors with re�ned cells compute on �ne

mesh levels. Thus, we apply the load-balancing algorithm to each mesh level. The goal is to have an equal

number of elements of each mesh level on each processor. To illustrate the decomposition generated by the

load-balancing algorithm, we show in Figure 31 an adaptively re�ned mesh with two levels of re�nement

to which we apply the load balancing on four processors. The initial decomposition is uniform, and, thus,

only processors 0 and 2 have any re�nement in their subdomains. We apply load balancing once each

time step on each mesh level. After 10 coarse time steps, the decomposition on the uniform base mesh is

unchanged. However, the elements on both of the re�ned mesh levels have been redistributed to allocate

work to processors 1 and 3.

Allowing child elements to migrate away from their parents complicates the quadtree pointers in the

data structure. Since pointers to other processors' memory are not available, elements store the element

IDs of non-local parents or children. These global IDs can be used in resetting neighbor pointers after mesh

re�nement or coarsening has been performed. They are also used to reset pointers after data migration has

occurred.

In addition, allowing child and parent elements to be owned by di�erent processors increases the amount

of communication needed. Communication between the �ne and coarse mesh levels is needed to allow

interpolation of the �ne mesh values to the coarse mesh elements when parent and child elements are on

di�erent processors. Trees are constructed in both the coarse and �ne levels to mark which elements will

receive and send data, respectively, for the interpolation. This communication is generally more expensive

than the boundary exchanges since many more elements' values must be communicated, but it is performed

less frequently.

Communication is also needed from the coarse to the �ne mesh levels. When elements of the �ne mesh

should be removed to decrease the amount of re�nement in a particular region, parent elements must indicate

this condition to their child elements. Flags in the coarse element tell the �ne elements whether they should

be removed. The ags are communicated to non-local child elements in the same way the �ne-to-coarse-mesh

communication is done.
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Figure 29. Communication patterns for the Eulerian scheme. Only two rows of ghost cells (grey) are
needed along the edges of the subdomains (white).
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Figure 30. Example of 12 processors in 12 dynamic load balancing neighborhoods.
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Figure 31. Example of the decomposition (bottom) generated by the load-balancing algorithm for a mesh
with adaptive re�nement (top) on four processors. The decomposition on each mesh level is
shown.
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5.3.2 Parallel Implementation of the Lagrangian Scheme

The computational costs in the FMM are concentrated in the construction and evaluation of the local and

multipole expansions and in the direct velocity evaluations. More speci�cally, in a well written imple-

mentation and with a reasonable choice of k relative to p (particles per cell and precision of expansions,

respectively), the costs will be essentially split between the formation of Lexps from Mexps (for the far �eld)

and the direct evaluation of velocities induced by local neighborhood particles (the near �eld). It is therefore

these two \operations" that o�er greatest pro�ts through parallelization.

Given this observation, we proceed with the parallel implementation by setting the level of granularity

to coincide with these operations on the \primitive" data types of Clists, Lexps, and Mexps. Thus, any given

operation on (or between) these elements will be carried out serially on a processor, whereas the ensemble of

operations will be spread uniformly across the processors and carried out in parallel. This is a very natural

way of implementing the algorithm in the style that it has been presented above. It is also convenient that

the sizes of the elements (such as expansions) are order p, while the costs of the individual operations on

them are order p2. Thus it is possible to ship data of length p from processor to processor and provide work

for the recipient of order p2. This scaling is very advantageous in terms of minimizing the communication

costs relative to the overall computation costs.

Here, then, is the basic idea in our parallelization of the FMM. First each cell in the FMM tree is

assigned to a processor. The choice of which cells are assigned to which processor is, of course, an important

one in terms of e�ciency and load balancing, but that will be addressed later; and for the moment let us

just assume this mapping to be a given. The data associated with a cell (e.g. particle lists and expansions)

is kept on the processor to which it is assigned. This processor is also responsible for carrying out all of the

computations that contribute to this data (e.g. in the construction of the expansions or the evaluation of

velocities). To do this, it �rst establishes that it needs some particular piece of data from another cell, a

distant Mexp, say, for inclusion in the local Lexp. If the second cell also belongs to the processor, it simply

reads the data and does the operation. If, however, it belongs to another processor, it sends a message to

that processor asking for a copy of the Mexp, and when the reply arrives with the data, it then carries out

the operation.

In constructing the Mexps, the dependencies are straight-forward, with each Mexp depending on either

a local Plist (for a leaf cell), or the four Mexps of the four children of a non-leaf. In the other, downward,

pass of the algorithm, in which the Lexps and residual Clists are formed, the dependencies are not straight-

forward and must be computed for each individual cell. Again, it is the processor assigned to a given cell

that is responsible for computing these dependencies. In order to compute them it must have two things:

knowledge of the full FMM tree (its shape), and the \residual" |of Step 2d in 5.2.4-5| for the parent's cell.

To satisfy the latter, the full recursive algorithm is carried out on every processor, but the computational

actions are only carried out on the processor to which the active cell is assigned. It would be equally possible
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to only have residuals computed on processors assigned to given cells and then passed to any non-local

children. That would eliminate the apparently wasteful repetition of work, but would in fact be less e�cient

in the end, for two reasons. First, it adds communication overhead (and clutter to the code). And more

critically, it forces processors to unnecessarily wait for parent's residuals to arrive from the owning processor.

Computing them locally is not (relatively) expensive, and allows all of the processors to stay active, working

in parallel on the expensive translation operations.

So as to know the full shape of the FMM tree, we store locally, on every tree, the entire FMM tree

hierarchy in skeletal form. Each cell in this skeletal tree consists of the following essential data: two pointers,

for the tree structure, to parent and �rst child (skeletal) cells; the processor number of the owning processor;

a universal cell id (described below), through which all processors agree on a single name for a given cell; a

data pointer, which tells where data is stored for locally \owned" cells (or for non-local, temporarily shipped

in data); three integers giving the cell level and position within the level (note: this data could be used

as a universal id, but it is more convenient to use a separate device; the integral position indicators are

most helpful for deducing adjacency); a small collection of bit ags for critical information relative to the

\multiple" FMM tree structure; and other helpful information.

In all, this representation of the tree can be made quite compactly, e.g. with 32 bytes per cell, and

generally is not a memory concern. It does, of course, scale with the full problem size, so in the limit of

increasing processors with �xed or decreasing memory, it would eventually have to be addressed, but we do

not approach that limit. To maintain the tree in a globally consistent state requires some e�ort. The simplest

and least error-prone mechanism is to force a full exchange of information among the processors any time the

tree changes, essentially rebuilding all of the non-local tree on all processors. This mechanism is currently

the only one implemented in the code. Should it become a limiting factor for e�ciency, an incremental

method could be implemented in which only changes to the hierarchy (re�nements and coarsening of cells)

and movement of cells from processor to processor would be communicated.

The universal cell ids are formed by concatenating the following values into a binary word: an index to

the coarse cell containing it, its depth in the tree, and two bits per level of depth that traces its ancestry. In

this way, the identity of any cell can be easily transmitted from processor to processor (in, say, 4 bytes). Such

ids can of course be computed on the y, but for the sake of e�ciency they are recorded in the skeletal trees

on all processors. To speed the reverse process of �nding a cell from its id, a look-up-table which translates

cell ids to cell pointers is kept to some speci�ed depth of cells on all processors. This look-up-table is quickly

referenced through a simple operation to grab the leading bits of the cell id, and the remaining bits then

correspond to a quick pointer chase down the skeletal tree hierarchy.

Now that we have overviewed all of the necessary devices, we return to look at the parallel implemen-

tation of the FMM in more detail. We consider the four basic functions:

1. Adding a list of particles (strengths and positions) or evaluation points (just positions) to the tree.

2. Construction of expansions and evaluation of velocities.
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3. Returning the velocities at the evaluation points.

4. Moving particles (e.g. vortices) that are convected with the ow.

For each of these four functions, we employ a similar asynchronous communication scheme. The mo-

tivation for this is two fold: �rst, we do not know, a priori, the communication pattern, and, secondly, we

would like to avoid idle time imposed by blocking communication calls. The crux of the method is that

processors make requests to other processors on an as-needed basis. Wherever possible, they continue with

other local work while awaiting a reply. Since a processor cannot know when it will receive requests, or

from what processor it may receive them, it must continually make non-blocking checks for newly arrived

messages, and answer them a soon as possible. Also, since a processor may receive requests after it has

�nished all other local work, global synchronization of the processors (post-task) must be accomplished in a

non-blocking fashion that allows a processor to continue to check for new requests while attempting global

synchronization. Each of these features will be illustrated in the following discussions.

Addition of Particles

In this section we cover the addition of particles to the FMM, whether they be vortex or dilatational elements;

moreover, the addition of evaluation points is identical.

First a list of particles (a Plist) is built, a particle at a time, on each processor through a function call

that looks like new particle(q,x,y). These are not yet added to the FMM tree. That happens when a call

to realize particles() is made, after the Plists have been built. If any of the Plists are non-empty, then

each processor does the following. It goes through its list of particles and �nds the FMM leaf cell to which

each one belongs. If this cell is local, the processor adds the particle to the Plist and continues. If it is not

local, the processor posts a message to the owning processor with a copy of the particle data and the cell

id to which the particle belongs (since it already did the work to �nd it). In the meantime (e.g. between

each step in the loop through the Plist), the processor checks to see if any particles have been shipped to it

from other processors. This is a non-blocking test, necessary for the asynchronous communication, and if no

messages have come, the local processing simply continues. If, however, a message has arrived, it reads this

message, inserts the particle as instructed, and then replies to the originating processor to inform it that its

particle was received and inserted. This second transmission is essential for the proper termination of the

process. It also requires that processors check for this type of reply message within the loop.

Each time a processor ships a particle, it increments a local count of \particles in transit." Each time

it receives a reply con�rming an addition, it decrements this count. Once it �nished going through the

local Plist and this count has returned to zero, it begins an attempt to synchronize with the rest of the

processors. When all of the processors reach this synchronization phase, all particles will have been properly

inserted. During the attempt to synchronize, however, a processor must continue to check for incoming

particle messages which could still be generated by processors with more lengthy initial lists. This requires

a non-blocking synchronization mechanism which we write as loop sync(). This function returns a boolean
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value which remains true up until all processors have entered a loop calling the function. It is typically used

in the code as while(loop sync()) f/* do local checks or work*/g, as it is in the code fragment below.
All processors will synchronously exit such loops. This mechanism is used whenever the code concludes a

section involving asynchronous communication.

Here is the code fragment for particle additions. Note that the call to check messages() carries out an

action associated with the message type, such as the addition of a received particle to the appropriate local

cell, or the decrementing of the \particles in transit" count upon receipt of a reply type message.

for (i=0; i<num particles; i++) f
C = leaf cell containing (Particle[i]);

if (local(C))

add particle to cell (C, Particle[i]);

else f
ship particle (owner(C), Particle[i]);

particles in transit++;

g

check messages(particle type);

check messages(reply type);

g

while (particles in transit) f
check messages(particle type);

check messages(reply type);

g

while (loop sync()) f
check messages(particle type);

g

rebalance tree()

update skeletal tree()

Construction of the Expansions and Velocity Evaluations

The key feature we rely on here is that of superposition. In constructing the expansions and evaluating

the velocities, the order in which expansions and particle lists are incorporated does not matter. This is a

critical assumption in the asynchronous scheme we develop. A processor goes and asks for whatever remote
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data element it needs, and then continues with local work until they arrive, at which time it looks back

to see why it asked for them in the �rst place, and incorporates them as necessary. Thus the order of

assembly becomes unpredictable, but the principle of superposition makes this randomness unimportant

(above machine precision).

What does matter is that a given item is �nished before it is shipped to another processor for use

elsewhere. All of the necessary Mexps must arrive and be acted on, for example, before a particular Lexp

can be passed on to its cell's children. There are complex dependencies that must be accounted for in the

method, particularly in the downward pass where Lexps depend on many Mexps as well as their parent's

Lexp which in turn depends on many more Mexps and its parent's, etc. In this section we will develop a

method that naturally handles these dependencies and, at the same time, keeps processors from idling while

they wait for some bit of information to arrive.

First, we mark all expansions as incomplete by setting to unity a particular integer associated with

each one. We then begin the algorithm, doing local work where we can. For example, the formation of

Mexps from Plists is always purely local since the Plist and Mexp will belong to the same cell; when these

leaf Mexps are formed (they depend only on the local Plist), their \incompleteness count" is decremented,

becoming zero and indicating that they are complete and ready for inclusion elsewhere. The more general

case occurs in the construction of a Mexp for a non-leaf cell. Suppose we wish to construct a Mexp in a cell

C1 owned by processor P1, which has a non-local child cell C2 as well as three local children C3{C5. P1 �rst

sends a message to P2, the owner of C2, asking for a copy of its Mexp. P1 makes space for the copy of the

Mexp under its image of C2, and includes in this data structure an instruction that says, when this Mexp

arrives, translate it and include it in the Mexp for C1. It also increments the incompleteness count for the

C1 Mexp, thus making it two. Continuing with local work, it translates the Mexps from C3{C5 and includes

them in the C1 Mexp. When all local work for this Mexp is done its incompleteness count is decremented,

becoming one, pending the arrival of the C2 Mexp.

Meanwhile, P2 has received the message and looked up the Mexp for C2, but it �nds that this has not

yet been fully computed (its incompleteness count is positive). It therefore appends P1 to a list of processors,

associated with the C2 Mexp, that have requested this Mexp. Eventually, P2 carries out the operation to

complete the C2 Mexp, at which time it sends a copy to P1 and all other processors in the associated list.

P1 then receives this message, stores the Mexp, and retrieves the instruction that says to incorporate

it in the C1 Mexp. It does so, and then decrements the C1 Mexp incompleteness count, making it zero,

indicating that this Mexp is now complete and ready for inclusion elsewhere.

The single mechanism illustrated in the above example is basically all that is needed to parallelize the

core of the algorithm. The only additional wrinkle is that lists of pending actions have to be associated with

incomplete local objects (Lexps and Mexps) as well as remote objects due to arrive. Thus, in the above

example, let us assume that P1 goes on to work on the parent C0 of the original C1, while that cell's Mexp is

still incomplete, awaiting the data from P2. Since the C0 Mexp needs the C1 Mexp that is not yet available,
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P1 attaches to C1 Mexp an instruction to include it in the C0 Mexp whenever it becomes available. It then

increments the C0 Mexp incompleteness count and continues work elsewhere. After the data from P2 arrives

and the C1 Mexp is marked as complete, the action will be carried out that includes it in the C0 Mexp, and

that Mexp's incompleteness count will be decremented.

Such dependencies can naturally continue to grow, in particular during the downward pass in which

the completion of entire subtrees can be pending on the arrival of a single remote Lexp. Regardless of their

complexity, however, these dependencies are implicitly taken care of, and the algorithm is guaranteed to

both run to completion and to never sit idle when there is any local work to be done.

In addition to the individual incompleteness counts, each processor also maintains a global count of the

number of data requests that it has posted but which have not yet been answered. When it has �nished its

local pass through the FMM tree and this count returns to zero, all local work is done, and the processor

enters a synchronization loop, like the one in the last section, still checking for requests from other processors

for local data.

Provision of Evaluation Point Velocities

Once the velocities have been computed at the grid points, they must be returned to the AMR code. Within

the list of point, an entry is kept for each point specifying the processor to be replied to and a pointer into

that processor's address space, which is where the velocity will be written.

The communication methodology is identical to that used in the addition of particles to the FMM

cells. Here, for each evaluation point, a message is sent to the originating processor giving the value and

the address into which it is to be written. That processor copies the value into memory and replies to the

processor owning the evaluation point, allowing it to maintain a count for governing passage into a loop

synchronization phase.

Advection of Particles

Any particles that are advected with the ow (such as vortices) are moved according to a traditional RK2

scheme once the velocity has been evaluated at their positions. Since this motion may cause particles to

move from cell to cell of the FMM, communication is required in parallel implementations, both after the

predictor and the corrector phases of the integration.

For e�ciency, and for the reuse of code, we �rst collect all particles that have drifted out of their previous

home FMM leaf into Plists on each processor, and delete them from their original homes. These are then

reinserted just as new particles are inserted, with the additional data �elds of velocity and original position,

as needed in the RK2 scheme.

Load Balancing

The code uses dynamic load balancing in an attempt to optimize the parallel e�ciency of the FMM. This
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has not yet been fully implemented, so results cannot be reported in this section, but we will outline the

scheme here.

Since the parallel granularity has been set at the level of FMM cells and associated data, the load

balancer operates on these objects. The goal is to distribute the cells across the processors in a pattern that

equalizes work loads among the processors while minimizing communication costs.

We have chosen to implement a general version of the dynamic load balancer presented in Section 5.3.1.

It must be provided with the following information: the current distribution of all objects (in our case, FMM

cells) onto processors, a quantization of the workload associated with each local object, and a connectivity

list for each local object, telling who its \neighboring" objects are and how strong each connection is.

The �rst item is already available from the skeletal FMM tree data. The second can be easily estimated

from a cell's involvements in the FMM algorithm. And the last can also be extracted from the FMM

algorithm as a list of all other cells from which the cell acquires data.

Given this information, the load balancer can establish processing neighborhoods and then attempt to

balance the workload within each, by migrating cells from overloaded processors to under-loaded processors.

Through the use of the connectivity lists, it is able to do this while maintaining data locality and hence

controlling communication costs.

The load balancer returns the list of cells to be moved, and the actual migration is carried out by the

FMM code. Following a migration of cells, the skeletal trees of all processors must be updated, as the working

assumption is that all processors must know where any given cell is kept. (In the language of Section 5.3.1,

all processors are treated as \concerned" processors.)
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6. Numerical Results

We present results for one set of operating conditions approximating the experimental ow�eld in the 7.5 Hz

forcing case. We consider a rectangular domain, 40 cm wide and 20 cm high, with a planar jet of fuel centered

on the domain centerline, at x = 20 cm, and owing vertically upwards. A jet width of 1:16 cm is chosen

to match the experimental conditions. The fuel jet is surrounded by coow air. The jet velocity is 0:8m=s,

and the coow velocity is 0:1m=s. The ow setup is illustrated in Figure 32. The jet ow is forced with an

impulse function at a frequency of 7:5Hz (a period of 133:3ms). The velocity pulse is square (modeled with

sharp hyperbolic tangent rise and fall functions) with a 13:3ms width, and a large 50% forcing amplitude

designed to produce large organized vortices, distinct from any natural jet stability modes, less than one

jet-width downstream of the jet exit.

The composition of the fuel jet is 40% CH4, 60% N2 by volume, while the coow is pure air 21% O2,

79% N2 by volume. Both jet and coow are at room temperature 300K. We use a single step irreversible

global chemical mechanism :

CH4 + 2O2 ) CO2 + 2H2O

with forward rate kf = Ae�E=RT , where A = 5:0 � 1022 (mole-cm-sec-K) and E = 47600 cal=mole. A

comparison between the di�usion ame solution using this mechanism and a 46-step C1 mechanism [90] is

shown in Figure 33, suggesting that the ame model computed with the above mechanism is adequate in

terms of these global ame features. On the other hand, this mechanism results in a laminar premixed ame

speed that is signi�cantly lower than the expected value at stoichiometric methane-air conditions, as we shall

see below.

The ow�eld is initialized with the 1D temperature and species pro�les from the Chemkin-Oppdif [50,91]

di�usion ame solution shown in Fig. 33, which are arranged in the 2D domain to correspond to two di�usion

ames extending in a straight line from the jet edges at y = 0 to the top of the domain. The initial pro�les in

the ame regions in the vicinity of the jet edges are scaled to provide a smooth transition from the jet/coow

exit conditions (room temperature, no products) to the 1D ame scalar �eld values.

A global Lagrangian time step of �tL = 0:25ms is used. The Eulerian coarse mesh solution uses this

time step as well. Five levels of adaptive mesh re�nement are used. The coarsest mesh, Mesh-0, is 64�32,
with 1:6 cells=cm, while Mesh-5 is �ner by a factor of 25, equivalent to 51:2 cells=cm. Baroclinic and di�usion

vorticity source terms are used to inject vortex elements on mesh level 4 (Mesh-4 is extended to all regions

where these source terms are above threshold). Expansion sources are injected on mesh levels [0 � 4]. A

redistribution interval of 50 global time steps is used.

The jet/coow speeds are chosen to model the low Reynolds number jet used in the experiment. The

numerical jet Reynolds number is Re = VjDj=�j ' 500, while the jet Richardson number is Ri = g(�1 �
�b)gDj=(�1(Vj � V1)2) ' 0:3. If we apply the mixing-layer results of Koop & Browand [92] which suggest

that mixing layers are momentum dominated for Ri < 0:05, this jet ow is clearly buoyancy dominated.
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As the jet ow evolves in time, the adaptive mesh structure changes accordingly to maintain adequate

spatial resolution. An example mesh structure is shown in Figure 34, for a fraction of the computational

domain including half the jet extent in x, corresponding to a 4� 4 cm region at the jet exit. Mesh levels 0-5

are evident, with the Mesh-5 region corresponding to the steep shear layer at the jet exit and the base of

the lifted ame, as we shall see below. The region of Mesh-5 re�nement narrows with downstream distance

because the di�usion ame burning rate and pro�le gradients decay with downstream distance.

The overall jet ame structure is shown in Figure 35 at time 214ms, where the color indicates temper-

ature, and solid/dashed contour lines delineate positive/negative vorticity. The rounded base of the ame

at the lift-o� height is evident, and is similar to experimentally observed ame base measured in the exper-

imental part of this report and in [9]. The ame base evidently resides on the coow side of the jet shear

layers, where ow velocities are relatively low. The �gure shows a pair of large-scale internal jet structures

that were shed from the nozzle at an earlier time. As they propagate downstream, they are seen to promote

mixing by entrainment of jet fuel-rich uid into the ame region and vice versa. Counter-rotating vorticity

is observed in the wake of these structures, on the jet-side of each ame, with positive vorticity appearing in

the wake of the negative-vortex/shear-layer and vice versa. This is baroclinically generated vorticity, driven

by the misalignment between density gradients in the ame and pressure gradients induced by the vortices.

This time instant corresponds to an early stage in the ow development, where no large buoyant structures

have formed yet. On the other hand, the initial phase of one structure is evident halfway downstream on

the outer side of the jet. These structure are gravity/buoyancy driven, and are not directly related to the

internal jet structures.

The time evolution of the ow is illustrated in Figure 36, over a time span of 140ms. The observed

frequency of outer buoyant structures is roughly 7:1Hz. Given the jet diameter, and the velocity di�erence

between the jet and coow, this gives a Strouhal number St = fDj=(Vj �Vc) = 0:12, with a Froude number

Fr = (Vj � Vc)
2=gDj = 4:3. This pair of values falls on the experimental �t observed in [31] for a large

number of jet ame experiments. More work is necessary to examine the possible e�ect of the present 7.5 Hz

forcing on this buoyant structure frequency.

The temperature �eld reveals the global ame topology, but does not provide ame structure or burning

rate. These details may be studied using plots of the ame heat release rate wT , as shown in Figure 37, where

the heat release contours are superposed on a color representation of the vorticity �eld, for the same time

instant in Fig. 35. To begin with, the vorticity �eld structure, as in Fig. 35, reveals internal jet structures and

outer buoyant structures, as well as the jet shear layers. The shear layers' decay with downstream distance is

an indication of the e�ect of heat release, uid expansion, and increased viscosity. The heat release rate �eld

reveals several important details. The reaction zone is clearly modulated by the outer buoyant structures,

more so than by the internal jet eddies. This is not true when jet structures pass by the stabilization point,

as we shall see later. On the other hand, for most of the length of the ame, the combination of expansion

�eld, and high temperature tend to both move the ame away from the jet and reduce the growth of internal
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jet structures. Moreover, contours of heat release rate reveal a peak in the immediate downstream vicinity

of the internal jet structures. The enhanced burning rate in this location is due to the increased ux of

entrained fuel, driven by the internal vortices, as well as the increased ux of entrained coow air, driven by

the outer vortices, into the ame. The opposite is true immediately downstream of the outer vortices and

upstream of the inner vortices. Finally, consider the ame stabilization region, where a classic triple ame

structure is observed. The heat release rate peaks at the tip of the triple ame, at a value signi�cantly higher

than that in the di�usion ame downstream of the stabilization point, as we shall see in more detail later.

Extending sideways from the ame tip are two partially premixed ame branches, a rich branch into the fuel

stream and a lean branch into the coow air stream. The spatial extent of the triple ame structure is rather

small, as the three branches �t within the rounded ame base observed in the temperature �eld shown in

Fig. 35. The structure and dynamics of the triple ame at this location are relevant to the understanding

of the jet stabilization mechanism, as illustrated in the following discussion.

The time evolution of the triple ame structure in relation to the vorticity �eld is shown in Figure 38.

In the �rst frame, top left hand corner, the ow is relatively quiescent, prior to the forcing velocity pulse.

The ame base/triple ame exists where the velocity is low enough to allow its survival against the ow.

The rich branch is elongated with the faster jet uid, and is generally longer than the lean branch. In the

next frame, strong vorticity is observed emanating from the jet exit as the increased velocity imposed at the

inlet generates large amounts of circulation in the shear layers. In the third frame, two distinct strong jet

vortex structures have formed, and proceed to turn around and entrain the triple ame. The rich branch is

virtually decimated as a result of the large ow velocities/strain-rates imposed by the vortices. As a result

of the ow �eld due to the vortices, the ame base is observed to curve inwards behind them. This motion

continues and is accentuated in the next frame as the two vortices pass by the ame base. The triple ame

structure is clearly stretched at this point, as both rich and lean branches are separated from the di�usion

ame. The curvature of the ame base into the jet stream is signi�cant at this time, due to the ow�eld

induced by the vortices. The following frame shows the ame tip turning around and pointing downwards as

the vortices move downstream. In the mean time, the rich triple ame branch is severely stretched by the jet

vortices, and extends into the jet. As this material is consumed, and the vortices move further downstream,

the ame base relaxes again, as seen in the last frame, pointing downwards and settling into the coow side

of the jet. The e�ect of the vortices continues to be felt by the di�usion ame as they ow downstream, as

evidenced by the local peak in heat release rate moving downstream along the di�usion ame as the vortex

pair proceeds in that direction in the last three frames. This observed e�ect of ow dynamics on the triple

ame structure in unsteady ow is consistent with earlier observations in [20].

Figure 39 illustrates the behaviour of the temperature �eld during this same interaction sequence at

the ame base. As indicated earlier, the whole triple ame structure is observed to lie within the rounded

temperature �eld at the ame base. Even when the triple ame is stretched out and the rich branch is dragged

away by the vortex, there is little observed in the temperature �eld besides broadening and entrainment of
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hot uid behind the vortices. On the other hand, the curvature of the ame base into the jet is clearly evident

in the temperature �eld. Similar curvature of the ame base, induced by vortex structures, is reported in

the experimental part of this report and in [9].

The local state of the mixture is clearly important to the triple ame structure at the ame base. One

useful means of characterizing the mixture conditions is based on the mixture fraction Z. We de�ne Z here

as,

Z =
1

2

�
1 +

�oxidizer

�fuel
Xfuel �Xoxidizer

�
where � is the stoichiometric coe�cient in the global reaction mechanism, and X is mole fraction, such that

at stoichiometric conditions when Xfuel=Xoxidizer = �fuel=�oxidizer, we get Z = 0:5 irrespective of the dilution

of the mixture. Moreover, the above Z varies linearly with X , and is always a positive number or zero. The

limit values of Z in a particular ow in the fuel and oxidizer streams depend on the local dilution if any. For

no dilution, Z = 0 in the pure oxidizer stream and, Z = (1 + �oxidizer=�fuel)=2 in the pure fuel stream. In

the present ow, with �oxidizer=�fuel = 2, Zjet = 0:9, and Zcoow = 0:395.

The mixture fraction contours are superposed on the heat release rate in the time sequence shown in

Figure 40. The stoichiometric mixture fraction line (Z = 0:5) is seen to emanate from the jet edges through

the premixed stoichiometric front of the triple ame and along the di�usion ame. Also evident is the

contortion of the Z-lines induced by the passage of the vortex-pair, and the associated modi�cation of the

triple ame branch-structure. Given that adjacent mixture fraction contours are separated by 10% of the

overall Z-range, the sequence of frames in the �gure suggests that the branches of the triple ame extend

roughly by �10% of the Z-range on either side of the stoichiometric line. As would be expected, the triple

ame branches extend and contract depending on the available distance from the stoichiometric line to the

nearest rich and lean Z-lines. The mixture fraction lines also serve as a good indication of the entrainment

induced by the jet vortex structures, leading to improved mixing, as evidenced in the last three frames in

the �gure.

Close inspection of the mixture fraction contour lines reveals a spreading of the lines on either side of

the stoichiometric line in going from the jet exit plane to the ame base. This is an indication of premixing

of jet and coow uids such that a premixed charge of CH4 and O2 is available at the triple ame location.

This premixing has been suggested in earlier experimental studies [4,9,10,11], and can be seen more explicitly

in Figure 41, where the product of mole fractions of CH4 and O2 is plotted superposed on the heat release

rate contours. Again the broadening of the red region, where XCH4
XO2

is high, is an indication of the

inter-di�usion of the two pro�les and resulting premixing. Also noteworthy is the presence of signi�cant

amounts of unreacted O2 in the jet, evidently a result of incomplete combustion of the premixed charge at

the triple ame. Moreover, signi�cant amounts of premixed uid are carried away unburnt by the vortices

as they pass beyond the lifto� height.

The local ow expansion rate, r�v which is an experimental observable using Particle Imaging Velocime-
try, is also shown plotted superposed on the heat release rate contours in Figure 42. Various interesting
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features are evident. To begin with, r�v is observed to peak immediately ahead of the triple ame premixed

front, which is consistent with that region being a preheat zone where premixed gases are heated by thermal

di�usion prior to ignition at the ame. This heating leads to expansion of the uid. As noted in Najm et

al. [93], r�v in a premixed ame was found to be dominated by the �rst two terms in (following the notation

above in Section 5.1) :

r�v = Da
wT

�cpT
+

1

RePr

r � (�rT )
�cpT

+
1

ReSc

Z � rT
cpT

� 1

W

DW

Dt

The same holds for the premixed front at the triple ame observed here. Further, the r�v �eld is found to

delineate the edge of the rounded temperature �eld at the ame base, with a peak immediately ahead of the

triple ame, consistent with that region being a preheat zone. However, the results suggest that r�v does

not exhibit a triple branch structure at the ame base, and hence would not be a useful indicator of the

presence of a triple ame (at least based on the present ame with a global chemical mechanism). Moreover,

the r�v �eld indicates weak but �nite heat di�usion around the vortices as they proceed downstream, which

is an indication of the presence of entrained hot uid as observed earlier in Fig. 39. Another weak r�v peak

is also observed to travel downstream on the outer side of the di�usion ame along with the local peak in

heat release rate. The issue of utility of r�v as a measure of heat release rate is signi�cant. The observed

r�v peak at the triple ame suggests that it is at least useful in locating the ame base. On the other hand,

ow unsteadiness can lead to large changes in the thermal di�usion term as observed in [93]. So the question

here is whether the observed variation in peak r�v at the ame base is correlated with that of wT .

In order to investigate ow and ame dynamics at the triple ame, we focus on that particular region,

and plot ow quantities along the stoichiometric mixture fraction line. To begin with, consider the pro�les

presented in Figure 43 at time 250ms, which corresponds to a quiescent time period between two forcing

pulses when the ame is unperturbed. The variation of various ow quantities is shown along the stoichio-

metric Z-line, extending from the jet edge at the domain inlet plane into the triple ame region at the ame

base, and continuing into the di�usion ame. The temperature pro�le shown is typical of a premixed ame,

rising from the inlet ow temperature of 300K up to a burnt gas temperature in excess of 2000K. Within

this premixed (triple) ame structure, the r�v term and its component heat release and di�usion terms

are shown. It is evident that these two terms dominate the r�v variation. Moreover, the di�usion term

is responsible for the early rise in r�v in the low temperature region of the ame. These observations are

consistent with [93]. The lower plot in the �gure illustrates the variation of velocity and strain-rate along

the stoichiometric Z-line. The velocity plotted is that tangential to this line, i.e. normal into the triple

ame as the ame base is approached. On the other hand the strain-rate is that normal to the Z = 0:5 line,

and therefore tangential to the premixed ame at the front of the triple ame structure. The shape of the

velocity pro�le is in agreement with earlier work on triple ames and lifted jets [19,9]. The laminar burning

speed computed with Chemkin/Premix [50,94] using this global mechanism and with the unburnt mixture

conditions existent at the Z = 0:5 location ahead of the triple ame, is found to be 10 cm=s. The di�erence
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between this burning speed and the expected value of 40 cm=s is not surprising given that this mechanism

was chosen to give acceptable di�usion ame structure rather than premixed ame speed. On the other

hand, the minimum velocity ahead of the triple ame is observed to be 13 cm=s in the �gure. The computed

laminar burning speed corresponding to the present discretization and the assumption of binary di�usion

into N2 may be di�erent from 10, which may explain at least part of this di�erence. Moreover, even though

this time instant is a quiescent period between two forced pulses at the inlet, the ow still displays some jitter

at the ame base, such that the triple ame itself is not stationary in space. Hence these velocities must

be corrected for the ame convective velocity to arrive at a relative velocity into the ame. Other factors

involve the curvature of the triple ame and the lateral uxes corresponding to the triple ame structure.

More work is necessary in this regard.

As vortex structures are shed from the jet and pass by the ame base, the triple ame structure is

modi�ed as seen in the time sequences above. In particular, the peaks of r�v and its heat release and

di�usion components in the triple ame region are shown plotted over four forcing cycles in Figure 44. This

data indicates that the peaks of r�v are correlated with maxima in the peak di�usion term and minima in

peak heat release rate. This inverse relationship of dilatation rate with ame heat release rate under highly

unsteady ow is consistent with earlier work [93]. As seen in Fig. 43, the peak of r�v, which occurs in the

low temperature reactants side of the ame, is primarily due to the di�usion term. This explains the strong

correlation between the two observed in Fig. 44. The inverse correlation with heat release is an indirect

result of the ow dynamics. The di�usion term maxima and heat release minima occur at a time instant

where the triple ame is exposed to strong tangential stretch rate due to the vortex ow �eld. Consider one

such occurence at time 310ms, corresponding to the lower left corner frame in Fig. 38. In this frame, the

vortices have passed by the ame base, and are causing strong stretch rate at the triple ame, along with

strong entrainment of the triple ame structure. The outline of ame structure in Fig. 43 is repeated in

Figure 45 at time 310ms to inspect the changes wrought by the ow�eld of the passing vortex. Comparing

the two �gures, note the drop in peak heat release rate in Fig. 45, and the concomitant rise in di�usive

heating in front of the triple ame and the associated dilatation rate. Moreover, note the large modi�cation

to the velocity pro�le, and the associated high tangential strain-rate peak at the triple ame. We suspect

that the drop in peak heat release rate is related to this observed increased strain-rate, while the increase of

r�v is related to the modi�cation of the temperature pro�le by the ow�eld resulting in a locally increased

di�usive term ahead of the ame.
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Figure 32. Schematic of jet ow setup. The computational domain is the region above the horizontal
dashed line.
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Figure 33. Comparison between computed opposed jet di�usion ame solutions with a detailed C1 mech-
anism and the present global mechanism.
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Figure 34. A 4� 4 cm region of the domain starting at the jet exit/centerline (x = 20; y = 0), showing the
adaptive mesh at a particular time instant (300ms).
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Figure 35. Overall jet ame structure shown using a color map for temperature (blue to red, 300-2000 K),
and solid/dashed contours for positive/negative vorticity. Negative vorticity is clockwise.
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Figure 36. Time evolution of the buoyant structures over a complete cycle spanning 140ms, starting at
the top left hand frame and proceeding from left to right. Frames are full domain height, 40%
of the domain width, and are 20ms apart.
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Figure 37. Overall jet ame structure shown using contours of heat release rate superposed on a color
representation of the vorticity �eld. Positive counter-clockwise vorticity is in red, and negative
clockwise vorticity is in blue.
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Figure 38. Time evolution of the triple ame region from time 280 to 330ms, starting at the top left hand
frame and proceeding from left to right. Frames are 4 � 4 cm, extending to the domain edge
at y = 0, and are 10ms apart. The color map illustrates vorticity as in Fig. 37, and contours
indicate heat release rate.
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Figure 39. Time evolution of the triple ame region from time 280 to 330ms, starting at the top left hand
frame and proceeding from left to right. Frames are 4� 4 cm, extending to the domain edge at
y = 0, and are 10ms apart. The color map illustrates temperature as in Fig. 35, and contours
indicate heat release rate.
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Figure 40. Time evolution of the triple ame region from time 280 to 330ms, starting at the top left hand
frame and proceeding from left to right. Frames are 4 � 4 cm, extending to the domain edge
at y = 0, and are 10ms apart. The color map illustrates heat release rate wT and contours
indicate mixture fraction Z.
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Figure 41. Time evolution of the triple ame region from time 280 to 330ms, starting at the top left hand
frame and proceeding from left to right. Frames are 4 � 4 cm, extending to the domain edge
at y = 0, and are 10ms apart. The color map illustrates product of mole fractions of CH4 and
O2 and contours indicate heat release rate wT .
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Figure 42. Time evolution of the triple ame region from time 280 to 330ms, starting at the top left hand
frame and proceeding from left to right. Frames are 4� 4 cm, extending to the domain edge at
y = 0, and are 10ms apart. The color map indicates the local ow expansion rate r � v, and
contours indicate heat release rate wT .
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Figure 43. Variation of various ow quantities along the stoichiometric mixture fraction line, extending
from the jet edge at the inlet plane into the ame base and di�usion ame beyond. Data is at
time 250ms, and is shown for a length of 1:2 cm along the stoichiometric mixture fraction line.
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ame, over a time span encompassing four forcing cycles.
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Figure 45. Variation of various ow quantities along the stoichiometric mixture fraction line, extending
from the jet edge at the inlet plane into the ame base and di�usion ame beyond. Data is at
time 310ms, and is shown for a length of 1:2 cm along the stoichiometric mixture fraction line.
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7. Comparison between Numerical and Experimental Results

The operating conditions for the experimental and numerical ows are similar in the 7.5 Hz forcing case,

so that comparisons are possible. The results from both studies are discussed here, with regard to data

presented earlier as well as additional data presented here.

Some di�erences are expected a priori between the experimental and numerical results. These pertain

primarily to (1) the use of a global chemical mechanism in the model, and (2) di�erences in the actual

velocity and species inlet boundary conditions between the model and the experiment. It is expected that

the use of a global mechanism would cause di�erences in ame structure and propagation. It also precludes

direct comparisons with particular ame species, e.g. OH LIF, and necessitates comparisons with global

ame quantities. As for the inlet pro�les, the numerical ow presumes a cold inlet with a velocity pro�le

that transitions from coow to jet velocities with a hyperbolic tangent function. Moreover, the model utilizes

an impulse forcing function for the jet velocity. This includes a 2 ms hyperbolic-tangent rise time from 0.8

to 1.2 m/s, a duration of 11 ms at 1.2 m/s, followed by a similar 2 ms fall time back to 0.8 m/s. Meanwhile

the coow is constant at 0.1 m/s. Experimental velocity �eld data is available for two forcing amplitudes

in the 7.5 Hz case. The data set presented earlier (Section 4) is at high amplitude. On the other hand, the

second data set, with 58% lower amplitude forcing (1.2 m/s peak jet centerline velocity), is closer to the

computed ow and is chosen here for detailed comparison. Even in this lower forcing case, however, there

are signi�cant di�erences between the measured velocity �eld at the jet inlet and the inlet velocity boundary

condition used in the model. The unperturbed (unforced) jet and coow velocities are at 0.66 and 0.19 m/s,

versus 0.8 and 0.1 m/s in the model. More signi�cantly, the measured velocity forcing function involves a

short deceleration of the ow in the jet inlet duct (reaching roughly zero velocity) immediately preceding the

downstream acceleration impulse. This transient is a result of undesired resonances in the acoustic forcing

system speakers, and has a total duration of 4.5 ms. It is followed immediately by the forcing impulse,

with roughly 4 ms rise and fall times, and a 4 ms duration at 1.2 m/s. These discrepancies between the

experimental and numerical forcing functions will be addressed in future work, while detailed comparisons

of the present data are presented below.

We begin by presenting the evolution of the computed and measured vorticity �elds as shown in Fig-

ure 46. These plots show clearly the downstream evolution of the jet shear-layer vortex. The two sets of

frames, numerical on the left and experimental on the right, are separated by similar time increments. The

agreement in terms of propagation of the vortex is an indication of the similar vortex phase speed in each

case. Given that the phase speed is a function of the jet/coow velocities and the expansion �eld due to

the ame, this agreement is encouraging. Moreover, weak same-sign baroclinic vorticity is evident on the

outer side of the ame in each case. These patches of vortical uid are roughly in the same spatial location

in each sequence. On the other hand, the observed shape of the vortices is one evident di�erence between

the two sets of results. The numerical vortex is seen to evolve by the rolling-up of the shear layer, resulting
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in a roughly circular shape only in the last frame (top). In contrast, the experimental vortex enters the

domain already circular. This discrepancy is probably a result of the di�erence between the boundary layer

thicknesses (on the inner and outer walls) of the experimental nozzle and the numerical jet shear layer thick-

ness. Moreover, while both vortices decay with downstream propagation, a measure of the e�ect of viscosity

(especially given the higher viscosity in the hot gases), the decay rate of the experimental vortex is faster.

This may be a result of preheating of the experimental jet uid by the nozzle walls, which are subjected

to radiative heat ux from the ame. Alternatively, discrepancies between the actual and computed heat

release and dilatation rates in the ame may be the cause of this mismatch in the vorticity decay rate. As

we noted earlier, the present global mechanism results in a premixed stoichiometric ame laminar burning

speed of 10 cm/s, versus the expected experimental value of 40 cm/s. Consequently, the computed ame is

expected to stabilize against the ow�eld in a region of relatively slower ow speed than in the experiment,

thereby landing further downstream from the nozzle and more towards the slower coow stream and away

from the jet shear layers. This would lead to a more detached ame, and to less interaction of passing shear

layer vortices with the ame base. The resulting reduced heating of the uid in the vortices may explain

their slower viscous decay rate in the computed results.

The dilatation rate (r�v) available from the experimental data is also shown in Figures 47 and 48, in a

frame sequence corresponding to that in Fig. 46. Also shown in these �gures (on the left) are the computed

temperature and dilatation �elds with superposed computed heat release rate contours. OH PLIF data is

not available for this forcing amplitude. Therefore, we utilize the r�v data for analysis of ame topology

and dynamics in the vicinity of the jet. To begin with, we note that the experimental r�v images seem

to suggest that the ame is attached during the sequence, in contrast with OH data presented earlier in

Fig. 4, which corresponds to the higher jet ow forcing amplitude. This apparent attachement at the lower

forcing amplitude is clearly not evident in the numerical results, as can be seen in Figs 47 and 48. This

discrepancy may be related again to radiation heating e�ects at the nozzle wall, which is absent in the model.

On the other hand, even if radiation e�ects were included in the model, the above mentioned low burning

speed predicted by the present global mechanism is expected to a�ect the ame lifto� height, tending to

land the ame base in a lower ow-velocity region than in the experiment. Finally, the e�ect of (1) possibly

thicker experimental boundary layer thicknesses, and (2) any wake zone due to possible ow separation on

the nozzle walls, both of which are absent from the model, would lead to a slower ow-speed region near the

jet edge. This would again allow the ame to exist closer to the jet in the experiment. On the other hand,

the seeming attachement of the r�v �eld may not correspond to an attached ame, because the conductive

heating from the nozzle walls may be responsible for the high expansion rates in the jet exit vicinity, ahead

of the ame. We proceed however, and note the primary dynamic feature observed in the experimental r�v
�eld, namely the existence of a propagating region with high dilatation rate, which is moving downstream

along the ame with a trailing minimum in r�v. This feature is in fact evident in the computed ame,

although the computed sequence reveals additional dynamics. The r�v �eld in the computed ame shows
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a peak immediately ahead of the ame base, followed by weak streaks on either side of the di�usion ame,

which correspond to the edges of the high temperature region, where di�usive heating is signi�cant. The

inner streak is modulated by the vortex on the fuel side of the jet (Figs. 47 and 48). A hint of this streak is

perhaps evident in the experimental frames, on the jet side of the above indicated downstream-propagting

high-r�v region, although the low signal amplitude is problematic. On the other hand, the outer streak

in the computed results is found to exhibit a maximum in r�v on the outer side of the ame, moving

downstream along with the observed peak evident in the heat release contours (Fig. 47), and evidently in

phase with the vortex propagation and the observed large-amplitude r�v region in the experimental frames.

This streak and the associated ame heat release rate are evidently enhanced because of the large strain-rate

due to the vortex, leading to enhanced uxes of fuel and oxidizer into the ame, and increased burning

rate. It is interesting however, that the experimental results indicate a higher rate of expansion in this outer

streak (relative to the observed r�v peak at the ame base) than is observed numerically. This may be

due to di�erences in ame structure between the real ame and that computed in the model using a global

mechanism. This di�erence may also explain the relatively narrow region of non-zero dilatatation in the

experiment versus the wide separation between the two streaks in the computed results. Further work using

detailed kinetics will help to resolve this issue. At this point, the experimental measurement of a peak in

r�v, along with a computed peak in heat release and r�v, all propagating downstream with the vortex,

indicates reasonable agreement between the computed and measured vortex-ame dynamics in this region

of the ow.

In the following, we make further comparisons between the numerical results and the earlier 7.5 Hz

experimental data at higher forcing amplitude, where OH PLIF data is available, and where ame lifto�

is evident. The comparisons will focus on ame-dynamical similarities/di�erences, rather than evolution of

ame or vortex spatial locations, which are evidently in disagreement due to the forcing amplitude di�erences.

We note �rst that the ame lifto� dynamics are similar in the high forcing experimental results (Fig. 4)

and the present computations (Fig. 38). This is despite the observation that the experimental 7.5 Hz

ame attaches to the jet exit during the quiescent part of the forcing cycle. Since, as indicated above, the

computations employ a cold jet exit, it is not possible for the computed ame to attach at this location,

even temporarily. On the other hand, the dynamics of the ame base as modulated by the passing vortices

compare reasonably with the observed computed ame base dynamics. This is evident in the observation

(Fig. 38) that the e�ect of the passing vortex is to increase the computed ame lifto� height after it has

passed by. In fact, the computed lifto� height, which, when the ame is unperturbed (t = 280 ms) is at

0.6 cm, achieves its largest value (0.75 cm) at t = 310 ms (Fig. 38) when the triple ame is stretched behind

the passing vortex. This is in agreement with the experimental observation in Fig. 4, where the largest ame

lifto� height (0.5 cm) is observed at 33.3 ms when the vortex has passed by the ame base. The computed

strain-rates, both tangential and normal to the stoichiometric mixture fraction line (Z = 0:5 line in Fig. 40)

at the ame base, are found to peak at t = 310 ms (Fig. 38). Further, as observed earlier above (Figs. 44
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and 45), the computed peak triple ame heat release rate is minimal at this time instant. Thus, both the

downstream convective ow velocity due to the vortex and the reduced peak heat release rate at this phase of

the forcing cycle are such as to increase ame lifto� height. Earlier in the cycle, at t = 300 ms (Fig. 38), both

the upstream convective velocity of the vortex and the relatively high heat release rate lead to the upstream

motion of the ame base and the reduction of the lifto� height to the minimum observed computed value of

0.53 cm. The determination of the disinct role of bulk convective motion of the ame base, versus that of

tangential and normal strain-rates, in this observed peak heat release rate and ame lifto� height variation,

is a matter for further investigation.

The interaction of the passing vortex with the ame base can be further studied by analyzing the

variation of ame quantities along the stoichiometric mixture fraction line, and by comparisons with the

experimental observations in Figures 8 and 9. To this end, consider the variation of computed heat release

rate (wT ) and dilatation rate (r�v) along the stoichiometric mixture fraction line, shown in Figure 49, at

two instances: when the ame base is quiescent, at t = 280 ms, and when it is stretched by the vortex, at

t = 310 ms (both in Fig. 38). The values of wT and r�v along the Z = 0:5 line are near their local peak

values, and exhibit similar variation along the line. To begin with, we compare the quiescent heat release

rate variation with distance s along the stoichiometric line with experimental peak OH variation along the

unperturbed ame (Fig. 8). We do not necessarily expect a direct correlation between wT and OH. On the

other hand, if, as expected, the 50% drop in peak OH mole fraction in Fig. 8 is due to a general drop in

burning rate with downstream distance, some corresponding variation is expected from the peak heat release

rate. This is, in fact, evident. Clearly, the large heat release peak at the triple ame in Fig. 49 is absent

from the attached ame peak OH variation in Fig. 8. On the other hand, the OH data reveals increasing

peak values up to roughly 3 mm distance from the jet exit, followed by subsequent monotonic decay with

distance, qualitatively similar to the computed heat release variation. Moreover, the decay of computed peak

wT over a 2.5 cm distance, starting behind the triple ame (roughly s = 0:9 cm in Fig. 46, t = 280 ms), is

56%, in agreement with the measured peak OH variation in Fig. 8.

On the other hand, the more localized variation of computed wT around the vortex (t = 310 ms,

s = [1; 3] cm, Fig. 49) is not evident in the measured peak OH variation (Fig. 9). We note, as indicated

above, that this variation of wT is a direct result of the strain-rate �eld induced by the vortex. The computed

tangential strain-rate �eld, along the Z = 0:5 line, is shown in Figure 50, along with the variation of ame

thickness. Compression (negative strain-rate) is observed immediately behind the triple ame location

(s = 0:9 cm in Fig. 50, also see Fig. 38, t = 310 ms), induced by the vortex ow�eld. This reverts to strong

tangential stretch at s > 2 (Fig. 50), peaking at s = 2:5, a location further along the ame on the outer side

of the vortex. The computed heat release rate reaches a maximum near this location (Fig. 50, and the heat

release contours in Fig. 38, t = 310 ms). Thus, Figs. 49 and 50 indicate that the computed heat release rate

exhibits a minimum in the compressed ame region, and a maximum in the stretched region. Both these

observations may be explained based on the the expected increase in the ux of fuel and oxidizer to the
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ame with stretch, and its decrease with compression. Again, as indicated above, higher strain-rate, within

the ranges explored here, leads to higher burning rate in this di�usion ame, and vice versa.

This heat release variation around the vortex is not reected in the measured peak OH mole fraction

variation in Fig. 9. This may be related to the e�ect of downstream convective ux of OH within the ame

leading to the smearing of these somewhat localized variations. We note that a similar observation was made

in [93] regarding OH correlation with heat release rate in the vicinity of sharp premixed ame cusps. On the

other hand, the qualitative features of the measured OH pro�le thickness, shown in Fig. 9, are similar to the

temperature �eld FWHM thickness variation with ame distance around the vortex, in Fig. 50 (t = 310 ms).

An increased/decreased thickness is observed in the compressed/stretched ame region. This is in agreement

with the variation observed in Fig. 9, where a peak in OH thickness is observed a short distance from the

ame base, followed by a decay to a broad minimum, and an eventual rise. Both computed temperature and

measured OH thicknesses reect the strain-rate �eld around the vortex.

Also shown in Fig. 49, is the variation of ow dilatation r�v along the Z = 0:5 line. As indicated earlier,

the variation of peak r�v in the triple ame region is converse to that of wT , shown in the same �gure. As

the triple ame gets stretched by the vortex (witness the increased peak strain-rate at the triple ame in

Fig. 50, comparing t = 280 and 310 ms) the triple ame peak wT decreases, whereas peak r�v increases

(Fig. 49). On the other hand, the subsequent variation of r�v along the ame at t = 310 ms does reveal a

minimum in the compressed region and a maximum in the stretched region, in correlation with the variation

of wT . This observation mirrors the r�v and wT �eld variation shown in the computed frames in Fig. 47.

As in [93], we observe that the correlation of r�v with wT is dependent on the local unsteady ow �eld.
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Figure 46. Sequence of computed (left) and experimental (right) frames showing the vorticity �eld, with
time advancing from bottom to top. The computed/experimental image is for the left/right
half of the jet. The color map is �xed in each sequence, and is inverted such that both sequences
delineate the strong jet shear layer vortex in red. Computed frames are at times: 296, 304,
and 320 ms. Experimental frames are separated by similar time intervals, at times: 11.1,
18.5, and 33.3 ms. Frames are 3.125�3.125 cm, and the bottom left/right hand corner of each
experimental/computed frame is the jet exit plane intersection with the jet centerline.
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Figure 47. Sequence of computed frames (left), showing the temperature �eld and heat release rate con-
tours, and experimental frames (right) showing the dilatation rate (r�v) �eld, with time ad-
vancing from bottom to top. The computed/experimental image is for the left/right half of
the jet. The color map is �xed in each sequence. Computed frames are at times: 296, 304,
and 320 ms. Experimental frames are separated by similar time intervals, at times: 11.1,
18.5, and 33.3 ms. Frames are 3.125�3.125 cm, and the bottom left/right hand corner of each
experimental/computed frame is the jet exit plane intersection with the jet centerline.
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Figure 48. Sequence of computed frames (left), showing the dilatation rate (r�v) �eld and heat release
rate contours, and experimental frames (right) showing the dilatation rate �eld, with time
advancing from bottom to top. The computed/experimental image is for the left/right half
of the jet. The color map is �xed in each sequence. Computed frames are at times: 296,
304, and 320 ms. Experimental frames are separated by similar time intervals, at times: 11.1,
18.5, and 33.3 ms. Frames are 3.125�3.125 cm, and the bottom left/right hand corner of each
experimental/computed frame is the jet exit plane intersection with the jet centerline.
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Figure 49. Variation of computed heat release rate and dilatation rate (r�v) along the stoichiometric
mixture fraction line. Distance along the line is measured from the jet exit. The large peaks
observed correspond to the triple ame location at the ame base. Data is shown at t = 280 ms,
when the ow is quiescent (see Fig. 38), and at t = 310 ms, when the triple ame is strongly
stretched by a passing vortex.
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Figure 50. Variation of computed tangential strain rate (tangential to the mixture fraction contours) and
ame temperature pro�le thickness (Full Width Half Maximum, FWHM) along the stoichio-
metric mixture fraction line. Distance along the line is measured from the jet exit. The large
strain-rate peaks observed correspond to the triple ame location at the ame base. Data is
shown at t = 280 ms, when the ow is quiescent (see Fig. 38), and at t = 310 ms, when the
triple ame is strongly stretched by a passing vortex.
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8. Conclusions

We have developed a massively parallel coupled Lagrangian-Eulerian reacting ow code, and used it in

conjunction with detailed experimental measurements to study a reacting jet ow.

The experimental and numerical methodologies were presented in detail. The construction of the nu-

merical model was discussed, including adaptive mesh re�nement, Eulerian and Lagrangian discretizations,

time integration, and necessary coupling terms. Numerical and experimental results were presented and

discussed in detail, to assess the validity of the model predictions and suggest possible improvements.

Experimental results provide a clear presentation of the shedding of vortex structures from the jet shear

layers and their interaction with the ame. Flame lifto�, and the interaction of jet vortex structures with

the lifted ame, are demonstrated for di�erent forcing amplitudes and frequencies.

The model results agree generally with global features of lifted reacting jet ow. Large scale buoyant

structures are observed, driven by gravity and baroclinic vorticity generation. A lifted ame is observed,

with a triple ame structure at the ame base. The presence of a triple ame at this location has been

predicted theoretically but hitherto not observed in experimental or numerical computations of unsteady jet

ows. Its observation requires high spatial resolution at the ame base, which is only possible with adaptive

mesh re�nement in the present large computational domain. Moreover, these results suggest that a detailed

chemical mechanism is not needed for capturing the global features of the triple ame structure. Rather,

the spatial gradients of mixture fraction in the incoming fuel-air stream lead to the establishment of a triple

ame structure, even with a global mechanism. On the other hand, a detailed mechanism is necessary for

accurate modeling of internal ame structure, burning rate, and propagation speed.

The interaction of jet vortex structures with the lifted ame base was studied numerically and exper-

imentally. Detailed discussions were presented regarding comparisons of these results. While we observe

overall qualitative agreement in terms of ow-ame structure and dyamnics, certain details are not well pre-

dicted and require further work. Moreover, certain features of the experiment merit further attention. We

need to establish the extent to which the jet uid is preheated by contact with the radiatively heated nozzle

walls. This would provide a more accurate inow temperature speci�cation. Improved characterization of

the jet nozzle ow�eld near the nozzle walls, particularly regarding any wakes on outer nozzle walls, will help

improve con�dence in the shape of the velocity inlet pro�le. Similarly, improvements in the acoustic forcing

system to remove unwanted transients would provide a more ideal experimental velocity forcing function. On

the numerical side, a more detailed chemical mechanism is necessary, to provide a more accurate ame speed

and a better representation of ame spatial structure. To this end, a semi-implicit time integration scheme

is necessary to allow e�cient time integration of sti� chemical source terms. In addition, more realistic inlet

boundary conditions, based on better known experimental values, will improve the overall prediction of ow

and ame dynamics in the vicinity of the jet. Additional numerical studies at di�erent forcing amplitudes

and frequencies will be needed to provide additional model validation over a range of operating conditions.
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Future work will continue this detailed study, by focusing on necessary improvements in experimen-

tal and numerical components, and by evaluation of various ow cases and operating conditions. Further

development towards modeling of laboratory-scale pool �res requires the incorporation of models for pool

evaporation as well as soot generation, transport, and oxidation. This also requires associated characteriza-

tion of soot in the experimental ame. Finally, the presence of soot necessitates the inclusion of radiation

heat transport in the model, which would provide a more accurate representation of overall heat loss from

rich sooting ames.
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Appendix A

Dimensionless Governing Equations*

Low Mach Number Reacting Flow

1

�

D�

Dt
= �r�v

�
Dv

Dt
= �rp+ 1

Re
r � �!T +

1

Fr
�f

�cp
DT

Dt
=

( � 1)



dpo

dt
+

1

RePr
r � (�rT )�Da

NX
i=1

hiwi �
�

ReSc

 
NX
i=1

Yicp;iVi

!
� rT

� ( � 1)



1

ReSD
r �

2
4T NX

i=1

NX
j=1

�
XjDT;i

WiDij

�
(Vi �Vj)

3
5� 


RePr
r � qR + _Q

�
DYi

Dt
= wiDa�

1

ReSc
r � (�YiVi); i = 1; � � � ; N

where,

rXi =

NX
j=1

XiXj

Dij

(Vj �Vi) + ST

�rT
T

� NX
j=1

XiXj

�Dij

�
DT;j

Yj
� DT;i

Yi

�
i = 1; � � � ; N

po =
�T

W
; W =

NX
i=1

XiWi;  =
cp;ref

cv;ref

hi = hoi +

Z T

T o
cp;idT; Xi =

Yi

Wi

W i = 1; � � � ; N

r � �!T =
@�ji

@xj
=

@

@xj

�
�2

3
��ij

@uk

@xk
+ �

�
@ui

@xj
+
@uj

@xi

��

Re =
�refUrefLref

�ref
; F r =

U2
ref

Lreffref

Pr =
�ref cp;ref

�ref
; Da =

Lrefwref

�refUref
; 
 =

�o�oT
3
refLref

�ref

Sc =
�ref

�refDref

; SD =
�ref

DT;ref

; ST =
DT;ref

�refDref

ptotal(x; t) = po(t) + M2p(x; t); M =
Urefp

RrefTref
; Rref =

Ro

Wref

= cp;ref � cv;ref

wi =Wi

MX
k=1

(�
00

i;k � �
0

i;k)AkT
�ke�(Ek=T )

NY
j=1

�
Xjpo

T

��0
j;k

i = 1; � � � ; N

* Using binary di�usion coe�cients, Dij .

Assumptions:

1. Body force not chemically selective

2. Low Mach number approximation
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Non-Dimensionalization

�ref =
pref

RrefTref

Rref =
Ro

Wref

Eref = RoTref

Bref =
wref

WrefT
�k
ref

QN
j=1 c

�
0

j;k

ref

cref =
�ref

Wref

Vref =
Dref

Lref

�ref =
�refUref

Lref

tref =
Lref

Uref

href = cp;refTref

cv;ref = cp;ref �Rref

qR;ref = �oT
4
ref

_Qref =
�ref cp;refTref

tref

Tref ;Wref ; pref : Arbitrary

Uref ; cp;ref ; �ref : Arbitrary

�ref ; Dref ; DT;ref : Arbitrary

wref ; Lref ; fref : Arbitrary

Reaction Set, k=1,� � �,M

NX
i=1

�0i;k M i !
NX
i=1

�00i;k M i
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Appendix B

Evaluation of Upwind Cell Velocity

The following discussion is identical in each coordinate direction; therefore, we will discuss the formu-

lation for ~uij only. We will also drop the j subscript since the u formulation involves quantities along the

i direction, with j constant. This second order Godunov upwind formulation is based on [74]. The present

procedure is as follows:

1. If ui�1=2ui+1=2 < 0, set ~ui = 0. Done.

2. Find the limited �u=�x on the left cell wall, with �ur = ui+1=2 � ui�1=2, �ul = ui�1=2 � ui�3=2,

�u

�x

���
L
=

1

hx

�
0; if �ur�ul < 0
�lim

�
(ui+1=2 � ui�3=2)=2; �ur; �ul

�
; otherwise.

where �lim is a limiting function given by

�lim(a; b; c) = sign(a) �min(jaj; 2 min(jbj; jcj))

3. Find the limited �u=�x on the right cell wall, with �ur = ui+3=2 � ui+1=2, �ul = ui+1=2 � ui�1=2,

�u

�x

���
R
=

1

hx

�
0; if �ur�ul < 0;
�lim

�
(ui+3=2 � ui�1=2)=2; �ur; �ul

�
; otherwise.

4. Evaluate uL and uR, the extrapolated u velocity at the cell center from the left and right directions

respectively,

uL = ui�1=2 +
hx

2

�u

�x

���
L

uR = ui+1=2 �
hx

2

�u

�x

���
R

5. Evaluate the upwind velocity at cell i-center,

~ui =

(
uL; if uL > 0; uR > 0
uR; if uL < 0; uR < 0
0; otherwise.
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Appendix C

Evaluation of Upwind Cell Scalar Gradient

The following discussion is valid for any scalar S = fT; Ykg. The formulation is identical in each

coordinate direction; therefore, it is presented for g@S=@xjij only. We also drop the j subscript since the x

formulation involves quantities along the i direction, with j constant. This second order Godunov upwind

formulation is based on [74]. The present procedure is as follows:

1. If ui+1=2 � 0 or ui�1=2 < 0, evaluate �S=�xji, the limited �S=�x at cell i-center, using �Sr = Si+1 � Si,

and �Sl = Si � Si�1,

�S

�x

���
i
=

1

hx

�
0; if �Sr�Sl < 0
�lim ((Si+1 � Si�1)=2; �Sr; �Sl) ; otherwise.

where �lim is the limiting function given in Appendix B.

2. If ui+1=2 < 0, evaluate �S=�xji+1, the limited �S=�x at cell (i+1)-center, using �Sr = Si+2�Si+1, and

�Sl = Si+1 � Si,
�S

�x

���
i+1

=
1

hx

�
0; if �Sr�Sl < 0
�lim ((Si+2 � Si)=2; �Sr; �Sl) ; otherwise.

3. If ui�1=2 � 0, evaluate �S=�xji�1, the limited �S=�x at cell (i � 1)-center, using �Sr = Si � Si�1, and

�Sl = Si�1 � Si�2,

�S

�x

���
i�1

=
1

hx

�
0; if �Sr�Sl < 0
�lim ((Si � Si�2)=2; �Sr; �Sl) ; otherwise.

4. Evaluate extrapolated scalar values at the cell walls,

SL =

8<
:
Si�1 +

hx
2
�S
�x

���
i�1

; if ui�1=2 � 0

Si � hx
2
�S
�x

���
i
; otherwise.

SR =

8<
:
Si +

hx
2
�S
�x

���
i
; if ui+1=2 � 0

Si+1 � hx
2
�S
�x

���
i+1

; otherwise.

5. Evaluate the upwind scalar gradient at cell i-center,

g@S
@x

���
i
=
SR � SL

hx
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Appendix D

Procedure for Distributing Circulation among Existing

and Newly Created Vortex Elements

With the regular addition of vorticity in a large portion of the domain, it becomes critical to utilize

some scheme to deposit the vorticity onto existing elements, to as great of an extent as possible. In this

appendix, we will outline the scheme that we have developed for this purpose.

Suppose that we wish to add constant vorticity across some rectangular sub-domain during the compu-

tation. Suppose further that the ideal spacing between vortex elements [75] is h!, and that the rectangular

sub-domain contains some set of (k) existing, randomly distributed vortex elements. (Note that this set

should contain all elements whose core spacing diameters of h! intersect the region, including vortex ele-

ments whose centers are outside the region.) We will now provide an algorithm that e�ciently creates new

vortex elements in the \gaps" and evenly distributes the additional circulation among the existing and newly

created elements.

We begin by creating a rectangular mesh of bins of size h � h over the region, where h = 1
3
h!: We

can then approximate (or pixelize) a round vortex blob of diameter h! as being a 3� 3 bin square. Other

discretizations of the blobs could be used, as could other \pixel" resolutions; these are simply the parameters

we have chosen to implement.

Then, for each bin, we �nd the nearest vortex element among all of those whose centers lie within the

3 � 3 neighborhood of surrounding bins. All bins with some vortex in the neighborhood are marked as

\covered" (and covered by the vortex found to be closest). This step requires order(k) time.

The next stage of the algorithm is to add vortices to \cover" all of the bins that were not found to be

covered by some original element. We accomplish this by scanning, raster style, through all of the bins and

adding a vortex element (with zero circulation for the time being) each time we come to an uncovered bin.

In adding the new element, we aim to position it so as to cover a maximal number of previously uncovered

bins. This is accomplished through considering each of the bins in a 3� 3 neighborhood (to cover the local

bin, the addition must be made in one of these) and choosing the center point of the one that will generate

the most new coverings. After each addition, the neighborhood of bins must be updated with new coverage

information, and then the scan is continued. The full scan requires order(Area=h!) time, and following the

scan, each bin is \covered" by some vortex element.

At this stage, we also have a map from bins to (nearest) particles, both old and new. To distribute the

vorticity onto the elements, we simply assign a circulation nbh
2 to each particle, where nb is the number

of bins mapped to the particle and  the constant vorticity value being added to the region. Before the

addition, however, we make a couple of adjustments to the positioning that improve the distribution.

First, we shift all of the newly added particles to the \center of mass" of the bins to which they have

been assigned. This is a means of conserving linear impulse in the injection onto the newly added elements,
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on a element-by-element basis. We next make an adjustment to guarantee global linear impulse conservation

between the original constant vorticity distribution and the actual additions that will be made to new and

existing elements. The impulse will be conserved if

0 =

numbinsX
i=1

xBini � xParticleM(Bini)

where M is the map from bins to nearest particles. Global conservation can be enforced, so long as one new

particle has been added, by computing the above right hand side, and moving all of the new particles by the

constant vector needed to compensate.

Although we have not implemented it, a similar adjustment can be made to enforce global angular

momentum conservation as well, when at least two new particles are added, by shifting their positions

radially about the center of the region.
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